Advertisement

Journal of Computational Electronics

, Volume 13, Issue 3, pp 701–708 | Cite as

A symmetric quantum-dot cellular automata design for 5-input majority gate

  • Arman RoohiEmail author
  • Hossein Khademolhosseini
  • Samira Sayedsalehi
  • Keivan Navi
Article

Abstract

By the inevitable scaling down of the feature size of the MOS transistors which are deeper in nanoranges, the CMOS technology has encountered many critical challenges and problems such as very high leakage currents, reduced gate control, high power density, increased circuit noise sensitivity and very high lithography costs. Quantum-dot cellular automata (QCA) owing to its high device density, extremely low power consumption and very high switching speed could be a feasible competitive alternative. In this paper, a novel 5-input majority gate, an important fundamental building block in QCA circuits, is designed in a symmetric form. In addition to the majority gate, a SR latch, a SR gate and an efficient one bit QCA full adder are implemented employing the new 5-input majority gate. In order to verify the functionality of the proposed designs, QCADesigner tool is used. The results demonstrate that the proposed SR latch and full adder perform equally well or in many cases better than previous circuits.

Keywords

Quantum cellular automata (QCA) Majority gate SR latch Full adder Nanoelectronic circuit 

References

  1. 1.
    Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4, 49–57 (1993). doi: 10.1088/0957-4484/4/1/004 CrossRefGoogle Scholar
  2. 2.
    Porod, W.: Quantum-dot devices and quantum-dot cellular automata. Int. J. Bifurcation Chaos 7, 2199–2218 (1997). doi: 10.1016/S0016-0032(97)00041-0 CrossRefzbMATHGoogle Scholar
  3. 3.
    Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE 85, 541–557 (1997). doi: 10.1109/5.573740 CrossRefGoogle Scholar
  4. 4.
    Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75, 1818–1825 (1994). doi: 10.1063/1.356375 CrossRefGoogle Scholar
  5. 5.
    Cho, H., Swartzlander, EarlE: Adder and multiplier design in quantum-dot cellular automata. Comput. IEEE Trans. 58, 721–727 (2009). doi: 10.1109/TC.2009.21 CrossRefMathSciNetGoogle Scholar
  6. 6.
    Zhang, R., Walnut, K., Wang, W., Jullien, G.: A method of majority logic reduction for quantum cellular automata. IEEE Trans. Nanotechnol. 3, 443–450 (2004). doi: 10.1109/TNANO.2004.834177 CrossRefGoogle Scholar
  7. 7.
    Roohi, A., Sayedsalehi, S., Khademolhosseini, H., Navi, K.: Design and evaluation of a reconfigurable fault tolerant quantum-dot cellular automata gate. J. Comput. Theor. Nanosci. 10, 380–388 (2013). doi: 10.1166/jctn.2013.2708 CrossRefGoogle Scholar
  8. 8.
    Kamrani, M., Khademolhosseini, H., Roohi, A., and Aloustanimirmahalleh, P.: A novel genetic algorithm based method for efficient QCA circuit design. In: Advances in Computer Science, Engineering & Applications, pp. 433–442. Springer, Berlin (2012) doi: 10.1007/978-3-642-30157-5_43
  9. 9.
    Roohi, A., Khademolhosseini, H., Sayedsalehi, S., Navi, K.: Implementation of reversible logic design in nanoelectronics on basis of majority gates. In: Computer Architecture and Digital Systems (CADS), 16th CSI International Symposium on, IEEE, 2012. doi: 10.1109/CADS.2012.6316410
  10. 10.
    Roohi, A., Menbari, B., Shahbazi, E., Kamrani, M.: A genetic algorithm based logic optimization for majority gate-based QCA circuits in nanoelectronics. Quantum Matter 2, 219–224 (2013). doi: 10.1166/qm.2013.1050 CrossRefGoogle Scholar
  11. 11.
    Sabbaghi-Nadooshan, R., Kianpour, M.: A novel QCA implementation of MUX-based universal shift register. J. Comput. Electron. 13, 198–210 (2013). doi: 10.1007/s10825-013-0500-9 CrossRefGoogle Scholar
  12. 12.
    Lu, Y., Lent, C.S.: Theoretical study of molecular quantum-dot cellular automata. J. Comput. Electron. 4, 115–118 (2005). doi: 10.1007/s10825-005-7120-y CrossRefGoogle Scholar
  13. 13.
    Rahimi Azghadi, M., Kavei, O., Navi, K.: A novel design for quantum-dot cellular automata cells and full adder. J. Appl. Sci. 7, 3460–3468 (2007) Google Scholar
  14. 14.
    Navi, K., Sayedsalehi, S., Farazkish, R., Rahimi Azghadi, M.: Five-input majority gate, a new device for quantum-dot cellular automata. J. Comput. Theor. Nanosci. 7, 1546–1553 (2010). doi: 10.1166/jctn.2010.1517 CrossRefGoogle Scholar
  15. 15.
    Navi, K., Farazkish, R., Sayedsalehi, S., Rahimi Azghadi, M.: A new quantum-dot cellular automata full-adder. Microelectron. J. 41, 820–826 (2010). doi: 10.1016/j.mejo.2010.07.003 CrossRefGoogle Scholar
  16. 16.
    Akeela, R., Wagh, M.D.: A five-input majority gate in quantum-dot cellular automata. In: NSTI Nanotech, vol. 2, pp. 978–981. (2011)Google Scholar
  17. 17.
    Toth, G.: Correlation and coherence in quantum-dot cellular automata. Ph.D. Thesis, University of Notre Dame, Notre Dame (2000)Google Scholar
  18. 18.
    Schulhof, G., Walus, K., Jullien, G.A.: Simulation of random cell displacements in QCA. ACM J. Emerg. Technol. Comput. Syst. (JETC) 3, 2–16 (2007). doi: 10.1145/1229175.1229177 CrossRefGoogle Scholar
  19. 19.
    Teodosio, T., Sousa, L.: QCA-LG: A Tool for the Automatic Layout Generation of QCA Combinational Circuits, pp. 1–5. Norchip, IEEE, Lisbon (2007). doi: 10.1109/NORCHP.2007.4481078 Google Scholar
  20. 20.
    Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: QCADesigner: a rapid design and Simulation tool for quantum-dot cellular automata. Nanotechnol. IEEE Trans. 3, 26–31 (2004). doi: 10.1109/TNANO.2003.820815 CrossRefGoogle Scholar
  21. 21.
    Thapliyal, H., Ranganathan, N.: Reversible logic-based concurrently testable latches for molecular QCA. Nanotechnol. IEEE Trans. 9, 62–69 (2010). doi: 10.1109/TNANO.2009.2025038 CrossRefGoogle Scholar
  22. 22.
    Huang, J., Momenzadeh, M., Lombardi, F.: Design of sequential circuits by quantum-dot cellular automata. Microelectron. J. 38, 525–537 (2007). doi: 10.1016/j.mejo.2007.03.013 CrossRefGoogle Scholar
  23. 23.
    Dehkordi, M.A., Shamsabadi, A.S., Ghahfarokhi, B.S., Vafaei, A.: Novel RAM cell designs based on inherent capabilities of quantum-dot cellular automata. Microelectron. J. 42, 701–708 (2011). doi: 10.1016/j.mejo.2011.02.006 CrossRefGoogle Scholar
  24. 24.
    Gin, A., Tougaw, P.D., Williams, S.: An alternative geometry for quantum-dot cellular automata. J. Appl. Phys. 85, 8281–8286 (1999). doi: 10.1063/1.370670 CrossRefGoogle Scholar
  25. 25.
    Roohi, A., Khademolhosseini, H.: Quantum-dot cellular automata: computing in nanoscale. Rev. Theor. Sci. 2, 46–76 (2014). doi: 10.1166/rits.2014.1014 CrossRefGoogle Scholar
  26. 26.
    Momenzadeh, M., Jing, H., Tahoori, M.B., Lombardi, F.: Characterization, test, and logic synthesis of and-or-inverter (AOI) gate design for QCA implementation. Comput. Aided Des. Integr. Circuits Syst. IEEE Trans. 24, 1881–1893 (2005). doi: 10.1109/TCAD.2005.852667 CrossRefGoogle Scholar
  27. 27.
    QCADesigner Home Page. www.atips.ca/projects/qcadesigner

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Arman Roohi
    • 1
    Email author
  • Hossein Khademolhosseini
    • 2
  • Samira Sayedsalehi
    • 1
  • Keivan Navi
    • 1
    • 3
  1. 1.Nanotechnology and Quantum Computing LaboratoryShahid Beheshti University, G. C.TehranIran
  2. 2.Department of Computer Engineering, Science and Research BranchIslamic Azad UniversityTehranIran
  3. 3.Department of Electrical and Computer EngineeringShahid Beheshti University, G. C.TehranIran

Personalised recommendations