Skip to main content
Log in

Delay uncertainty in MLGNR interconnects under process induced variations of width, doping, dielectric thickness and mean free path

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

This paper analyzes the delay performance of multi-layered graphene nanoribbon (MLGNR) interconnect under process induced variations. An equivalent multi-conductor transmission line (MTL) model driven by CMOS gate is employed for the analysis. The propagation delay is analyzed for different interconnect lengths and widths by taking into account the variations in width, dielectric thickness, dielectric constant, interlayer distance and doping concentration of MLGNR. Encouragingly, it is observed that the average deviation in delay is below 3 % for all process induced parameter variations except for the mean free path.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Das, D., Rahaman, H.: Modeling of single-wall carbon nanotube interconnects for different process, temperature, and voltage conditions and investigating timing delay. Journal of Computational Electronics, Springer 11(4), 349–363 (2012)

    Article  Google Scholar 

  2. Sarto, M.S., Tamburrano, A.: Comparative analysis of TL models for multilayer graphene nanoribbon and multiwall carbon nanotube interconnects. In: Proceedings of the IEEE International Symposium on Electromagnetic, pp. 212–217. Fort Lauderdale, (2010)

  3. Murali, R., Brenner, K., Yang, Y., Beck, T., Meindl, J.D.: Resistivity of graphene nanoribbon interconnects. IEEE Electron Device Lett. 30(6), 611–613 (2009)

    Article  Google Scholar 

  4. Echtermeyer, T.J., Lemme, M.C., Baus, M., Szafranek, B.N., Geim, A.K., Kurz, H.: Nonvolatile switching in graphene field-effect devices. IEEE Electron Device Lett. 29(8), 952–954 (2008)

    Article  Google Scholar 

  5. Lemme, M.C., Echtermeyer, T.J., Baus, M., Kurz, H.: A graphene field-effect device. IEEE Electron Device Lett. 28(4), 282–284 (2007)

    Article  Google Scholar 

  6. Gengchiau, L., Neophytos, N., Nikonov, D.E., Lundstrom, M.S.: Performance projections for ballistic graphene nanoribbon field-effect transistors. IEEE Trans. Electron Devices 54(4), 677–682 (2007)

    Article  Google Scholar 

  7. Gunlycke, D., Lawler, H.M., White, C.T.: Room-temperature ballistic transport in narrow graphene strips. Phys. Rev. B 75(8), 0854181–0854185 (2007)

    Article  Google Scholar 

  8. Li, H., Xu, C., Srivastava, N., Banerjee, K.: Carbon nanomaterials for next-generation interconnects and passives: Physics, status, and prospects. IEEE Trans. Electron Devices 56(9), 1799–1821 (2009)

  9. Dresselhaus, M.S., Dresselhaus, G.: Intercalation compounds of graphite. Advances in Physics. Taylor & Francis 51(1), 1–186 (2002)

  10. Xu, C., Li, H., Banerjee, K.: Modeling, analysis, and design of graphene nano-ribbon interconnects. IEEE Trans. Electron Devices 56(8), 1567–1578 (2009)

  11. Lamberti, P., Tucci, V.: Impact of the variability of the process parameters on CNT-based nanointerconnects performances: A comparison between SWCNTs bundles and MWCNT. IEEE Trans. Nanotechnol. 11(5), 924–933 (2012)

    Article  Google Scholar 

  12. Nieuwoudt, A., Massoud, Y.: On the impact of process variations for carbon nanotube bundles for VLSI interconnect. IEEE Trans. Electron Devices 54(3), 446–455 (2007)

    Article  Google Scholar 

  13. Kaushik, B.K., Sarkar, S.: Crosstalk analysis for a CMOS-gate-driven coupled interconnects. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27(6), 1150–1154 (2008)

    Article  Google Scholar 

  14. Nasiri, S.H., Faez, R., Moravvej-Farshi, MdK: Compact formulae for number of conduction channels in various types of graphene nanoribbons at various temperatures. Modern Phys. Lett. B 26(1), 11500041–11500045 (2012)

    Article  Google Scholar 

  15. Cui, J.P., Zhao, W.S., Yin, W.Y., Hu, J.: Signal transmission analysis of multilayer graphene nano-ribbon (MLGNR) interconnects. IEEE Trans. Electromagnetic Compatibility 54(1), 126–132 (2012)

    Article  Google Scholar 

  16. Burke, P.J.: Lüttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes. IEEE Trans. Nanotechnol. 1(3), 129–144 (2002)

    Article  Google Scholar 

  17. Hwang, E.H., Adam, S., Sarma, S.D.: Carrier transport in two-dimensional graphene layers. Phys. Rev. Lett. 98(18), 186806-1–186806-4 (2007)

    Article  Google Scholar 

  18. Yan, J., Zhang, Y., Kim, P., Pinczuk, A.: Electric field effect tuning of electron-phonon coupling in graphene. Phys. Rev. Lett. 98(16), 166802-1–166802-4 (2007)

    Article  Google Scholar 

  19. Areshkin, D.A., Gunlycke, D., White, C.T.: Ballistic transport in graphene nanostrips in the presence of disorder: Importance of edge effects. Nano Lett. 7(1), 204–210 (2007)

    Article  Google Scholar 

  20. Tan, Y.W., Zhang, Y., Bolotin, K., Zhao, Y., Adam, S., Hwang, E.H., Sarma, S.D., Stormer, H.L., Kim, P.: Measurement of scattering rate and minimum conductivity in graphene. Phys. Rev. Lett. 99(24), 246803-1–246803-4 (2007)

    Article  Google Scholar 

  21. Das, D., Rahaman, H.: Delay uncertainty in single- and multi-wall carbon nanotube interconnects. In: Proceedings of VDAT2012 Lecture notes in computer science 7373, pp. 289–299. Springer, Shibpur (2012)

  22. International technology roadmap for semiconductors (ITRS 2012). http://www.itrs.net/ (2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Kumar Majumder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, K.N., Majumder, M.K. & Kaushik, B.K. Delay uncertainty in MLGNR interconnects under process induced variations of width, doping, dielectric thickness and mean free path. J Comput Electron 13, 639–646 (2014). https://doi.org/10.1007/s10825-014-0582-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-014-0582-z

Keywords

Navigation