Skip to main content
Log in

Electronic transport across a layered structure of Fe/\(\upbeta \)-poly vinylidene fluoride/Fe using DFT calculations

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Quantum electronic transport across a \(\upbeta \)-poly(vinylidene fluoride) (\(\upbeta \)-PVDF) ferroelectric barrier structured between two ferromagnetic Fe layers is explored using DFT calculations. The multifunctional junction is organized in capacitor like structure, as FM (ferromagnetic metal)/FE (ferroelectric)/FM to understand the mechanism of electron transfer by controlling the spin polarization of the electrodes and also the ferroelectric polarization of the barrier. These studies are carried on a single bcc layer of Fe atoms in both the electrodes and two monomers of PVDF is utilized as a barrier. We investigated the dependence of total density of states (DOS), projected DOS, transmission coefficient and I–V characteristics on applied bias voltage using SIESTA & TRANSIESTA package.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Drew, A.J., Hoppler, J., Schulz, L., Pratt, F.L., Shakya, P., Kreouzis, T., Gillin, W.P., Suter, A., Moeley, N.A., Malik, V.K., Dubroka, A., Kim, K.W.: Direct measurement of the electronic spin diffusion length in a fully functional organic spin valve by low-energy muon spin rotation. Nat. Mater. 8, 109–114 (2009)

    Google Scholar 

  2. Cinchetti, M., Heimer, K., Wustenberg, J.P., Andreyev, O., Bauer, M., Lach, S., Ziegler, C., Gao, Y., Aeschlimann, M.: Determination of spin injection and transport in a ferromagnet/organic semiconductor heterojunction by two-photon photoemission. Nat. Mater. 8, 115–119 (2009)

  3. Lovinger, J.A.: Ferroelectric polymers. Science 220(4602), 1115–1121 (1983)

  4. Zhuravlev, M., Maekawa, S., Evgeny, Y.: Effect of spin-dependent screening on tunneling electroresistance and tunneling magnetoresistance in multiferroic tunnel junctions. Phys. Rev. B 81, 104419 (2010)

    Google Scholar 

  5. Velev, Julian P., Duan, Chun-Gang, Burton, J.D., Smogunov, Alexander, Niranjan, Manish K., Tosatti, Erio, Jaswal, S.S., Tsymbal, Evgeny Y.: Tsymbal: magnetic tunnel junctions with ferroelectric barriers: prediction of four resistance states from first principles. Nano Lett. 9(1), 427–432 (2009)

  6. Caffrey, Nuala M., Archer, Thomas, Runger, Ivan, Sanvito, Stefano: Prediction of large bias-dependent magnetoresistance in all-oxide magnetic tunnel junctions with a ferroelectric barrier. Phys. Rev. B 83, 1254091–1254094 (2011)

  7. Santos, T.S., Lee, J.S., Migdal, P., Lekshmi, I.C., Satpati, B., Moodera, J.S.: Room-temperature tunnel magnetoresistance and spin-polarized tunneling through an organic semiconductor barrier. Phys. Rev. Lett. 98, 0166011–0166013 (2007)

    Google Scholar 

  8. Velev, Julian P., Lopez-Encarnacion, Juan M., Burton, J.D., Tsymbal, Evgeny Y.: Multiferroic tunnel junctions with poly(vinylidene fluoride). Phys. Rev. B 85, 1251031–1251033 (2012)

    Google Scholar 

  9. Ikeda, S., Hayakawa, J., Ashizawa, Y., Lee, Y.M., Miura, K., Hasegawa, H., Tsunoda, M., Matsukura, F., Ohno, H.: Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature. Appl. Phys. Lett. 93, 0825081–0825083 (2008)

    Google Scholar 

  10. Barraud, C., Seneor, P., Mattana, R., Fusil, S., Bouzehouane, K., Deranlot, C., Graziosi, P., Hueso, L., Bergenti, I., Dediu, V.A., Petroff, F., Fert, A.: Unravelling the role of the interface for spin injection into organic semiconductors. Nat. Phys. 6, 615–620 (2010)

    Google Scholar 

  11. Vinzelberg, H., Schumann, J., Elefant, D., Gangineni, R.B., Thomas, J.: Low temperature tunneling magnetoresistance on (La,Sr)MnO3/Co junctions with organic spacer layers. J. Appl. Phys. 103, 093720-1–093720-5 (2008)

    Google Scholar 

  12. Duan, C.-G., Sabirianov, R.F., Mei, W.-N., Jaswal, S.S., Tsymbal, E.Y.: Interface effect on ferroelectricity at the nanoscale. Nano Lett. 6, 483–487 (2006)

    Google Scholar 

  13. Gerra, G., Tagantsev, A.K., Setter, N.: Ionic polarizability of conductive metal oxides and critical thickness for ferroelectricity in BaTiO\(_{3}\). Phys. Rev. Lett. 96, 1076031–1076033 (2006)

    Google Scholar 

  14. Gerra, G., Tagantsev, A.K., Setter, N.: Ferroelectricity in asymmetric metalferroelectric-metal heterostructures: a combined first-principles-phenomenological approach. Phys. Rev. Lett. 98, 2076011–2076013 (2007)

    Google Scholar 

  15. Duan, C.-G., Jaswal, S.S., Tsymbal, E.Y.: Predicted magnetoelectric effect in Fe/BaTiO\(_{3}\) multilayers: ferroelectric control of magnetism. Phys. Rev. Lett. 97, 0472011–0472013 (2006)

    Google Scholar 

  16. Sai, N., Kolpak, A.M., Rappe, A.M.: Ferroelectricity in ultrathin perovskite films. Phys. Rev. B 72, 0201011–0201013 (2005)

    Google Scholar 

  17. Belashchenko, K.D., Tsymbal, E.Y., van Schilfgaarde, M., Stewart, D., Oleinik, I.I., Jaswal, S.S.: Effect of interface bonding on spin-dependent tunneling from the oxidized Co surface. Phys. Rev. B 69, 1744081–1744086 (2004)

    Google Scholar 

  18. Zhuravlev, M.Y., Wang, Y., Maekawa, S., Tsymbal, E.Y.: Tunneling electroresistance in ferroelectric tunnel junctions with a composite barrier. Appl. Phys. Lett. 95, 0529021–0529023 (2009)

    Google Scholar 

  19. Li, J.C., Wang, C.L., Zhong, W.L., Zhang, P.L., Wang, Q.H., Webb, J.F.: Vibrational mode analysis of \(\beta \)-phase poly(vinylidene fluoride). Appl. Phys. Lett. 81, 2223–2225 (2002)

    Google Scholar 

  20. Poulsen, M., Ducharme, S.: Why ferroelectric polyvinylidene fluoride is special. IEEE Trans. Dielectr. Electr. insul. 17(4), 168 (2010)

    Google Scholar 

  21. Nakhmanson, S.M., BuongiornoNardelli, M., Bernholc, J.: Collective polarization effects in \(\beta \)-polyvinylidene fluoride and its copolymers with tri- and tetrafluoroethylene. Phys. Rev. B 72, 1152101–1152105 (2005)

    Google Scholar 

  22. Nakhmanson, S.M., Nardell, M.B., Bernholk, J.: Ab initio studies of polarization and piezoelectricity in vinylidene fluoride and BN-based polymers. Phys. Rev. Lett. 92, 1155041 (2004)

    Google Scholar 

  23. Geerlings, P., De Proft, F., Langenaeker, W.: Conceptual density functional theory. Chem. Rev. 103(5), 1793–1873 (2003)

    Google Scholar 

  24. Brandbyge, Mads, Mozos, Jose-Luis, Pablo, Ordejon, Jeremy, Taylor, Stokbro, Kuer: Density-functional method for non-equilibrium electron transport. Phys. Rev. B 65, 1654011–1654015 (2002)

  25. SIESTA documents and code. http://www.uam.es/siesta. Accessed 15 May 2012

  26. Furukawa, T., Date, M., Fukada, E., Tajitsu, Y., Chiba, A.: Ferroelectric behaviour in the copolymer of vinylidene fluoride and trifluoroethylene. Jpn. J Appl. Phys 19, LI09 (1980)

  27. Li, M., Wondergem, H.J., Spijkman, M.-J., Asadi, K., Katsouras, L., Paul, W.M.: Revisiting the delta-phase of poly (vinylidene fluoride) for solution-processed ferroelectric thin films. Nat. Mater. 237, 433–437 (2013). doi:10.1038/NMAT3577

    Google Scholar 

  28. Ferry, D.K., Goodnick, S.M., Bird, J.: Transport in Nanostructures. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  29. Valev, J.P., Duan, C.G., Belashchenko, K.D., Jaswal, S.S., Tsymbal, E.Y.: Effect of ferroelectricity on electron transport in Pt/BaTiO\(_{3}\)/Pt tunnel junction. Phys. Rev. Lett. 98, 1372011–1372013 (2007)

    Google Scholar 

  30. Rowan, Christopher K., Paci, Irina: Optical properties of Ag/polyvinylidene fluoride nanocomposites: a theoretical study. J. Phys. Chem. C 115, 8316–8324 (2011)

    Google Scholar 

  31. Choi, J., Dowben, P.A., Pabley, S., Bune, A.V., Ducharme, S., Fridkin, V.M., Palto, S.P., Petukhova, N.: Changes in metallicity and electronic structure across the surface ferroelectric transition of ultrathin crystalline poly(vinylidene fluoride-trifluoroethylene) copolymers. Phys. Rev. Lett. 80, 1328–1331 (1998)

    Google Scholar 

  32. Li, J.C., Wang, C.L., Yang, K., Wang, X.Y., Zhao, M.L., Zhang, J.L.: electronic structure of \(\alpha \) and \(\beta \)-phase of poly(vinylidene fluoride). Integr. Ferroelectr. 78, 27–33 (2006)

    Google Scholar 

  33. Jhong, W., Overnry, G., Tomanek, D.: Structural properties of Fe crystals. Phys. Rev. B 47(1), 95–99 (1993)

    Google Scholar 

  34. Kohlstedt, H., Pertsev, N.A., Rodríguez, J.: Theoretical current- voltage characteristics of ferroelectric tunnel junctions. Phys. Rev. B 72, 1253412–1253418 (2005)

    Google Scholar 

  35. Nuria G.C.: First principle study of the dependence of silicon electronic transport properties on the crystallographic growth. Dept. of electronic, Universitat de Berceleona (2010)

  36. Belashchenko, K.D., Velev, J., Tsymbal, E.Y.: Effect of interface states on spin-dependent tunneling in Fe/MgO/Fe tunnel junctions. Phys. Rev. B 72, 1404041–1404414 (2005)

    Google Scholar 

  37. Rungger, Ivan, Mryasov, Oleg, Sanvito, Stefano: Resonant electronic states and I–V curves of Fe/MgO/Fe (100) tunnel junctions. Phys. Rev. B 79(094414), 1–5 (2009)

    Google Scholar 

  38. Velev, J.P., Belashchenko, K.D., Stewart, D.A., van Schilfgaarde, M., Jaswal, S.S., Tsymbal, E.Y.: Negative spin polarization and large tunneling magnetoresistance in epitaxial Co|SrTiO\(_{3}\)|Co magnetic tunnel junctions. Phys. Rev. Lett. 95, 216601 (2005)

    Google Scholar 

  39. Sanvito, S.: Giant Magnetoresistance and Quantum Transport in Magnetic Hybrid Nanostructures, PhD Dissertation, University of Lancaster (UK), pp. 82–87 (1999)

  40. Shi, Xingqiang, XiaohongZheng, Zhenxiang Dai: Changes of coupling between the electrodes and the molecule under external bias bring negative differential resistance. J. Phys. Chem. B 109, 3334–3339 (2005)

    Google Scholar 

  41. Pemmaraju, C.D., Rungger, I., Sanvito, S.: Ab initio calculation of the bias-dependent transport properties of Mn12 molecules. Phys. Rev B 80, 104422 (2009)

    Google Scholar 

  42. Heiliger, Christian, Zahn, Peter, Yavorsky, Bogdan Yu., Mertig, Ingrid: Interface structure and bias dependence of Fe/MgO/Fe tunnel junctions: Ab initio calculations. Phys. Rev. B 73, 214441 (2006)

    Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Dr. Sharath Chandra, Dr. Mathi Jaya, IGCAR, Kalpakkam and Dr. S. V. M. Satyanarayana, Pondicherry University for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. B. Gangineni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gangineni, R.B., Bhatia, M.K. Electronic transport across a layered structure of Fe/\(\upbeta \)-poly vinylidene fluoride/Fe using DFT calculations. J Comput Electron 13, 613–619 (2014). https://doi.org/10.1007/s10825-014-0578-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-014-0578-8

Keywords

Navigation