Journal of Computational Electronics

, Volume 12, Issue 4, pp 658–665 | Cite as

A simulation framework for modeling charge transport and degradation in high-k stacks



In this paper we present a comprehensive physical model that describes charge transport and degradation phenomena in high-k stacks. The physical mechanisms are modeled using a novel material-related approach that includes in a self-consistent fashion the charge transport (dominated by defect-assisted contribution), power dissipation and temperature increase, defect generation, and ion and vacancy diffusion and recombination. The physical properties of defects, which play a crucial role in determining the electrical behavior of the high-k stacks, depend on their atomistic configurations, as calculated using ab-initio methods. This simulation framework represents a powerful tool to interpret electrical characterization measurements. In addition, it can be used to optimize logic and memory device stacks thanks to its predictive statistical capabilities that allow reproducing gate current, threshold voltage increase and time to breakdown (TDDB) statistics. Simulation results performed using this simulation package are shown to reproduce accurately leakage current, Stress-Induced Leakage Current (SILC), threshold voltage shift observed during Positive Bias Temperature Instability (PBTI) stress, TDDB in various dielectric stacks.


Modeling and simulation Leakage current Gate oxides Dielectric reliability Dielectric breakdown Non-volatile memory 


  1. 1.
    Kim, Y.-H., Lee, J.C.: Reliability characteristics of high-k dielectrics. Microelectron. Reliab. 44, 183–193 (2004) CrossRefGoogle Scholar
  2. 2.
    Young, C.D., et al.: Electron trap generation in high-κ gate stacks by constant voltage stress. IEEE Trans. Device Mater. Reliab. 6, 123–131 (2006) CrossRefGoogle Scholar
  3. 3.
    Bersuker, G., et al.: The effect of interfacial layer properties on the performance of Hf-based gate stack devices. J. Appl. Phys. 100, 094108 (2006) CrossRefGoogle Scholar
  4. 4.
    Bersuker, G., et al.: Breakdown in the metal/high-k gate stack: Identifying the “weak link” in the multilayer dielectric. IEDM Tech. Dig. 791–794 (2008) Google Scholar
  5. 5.
    Chau, R., Datta, S., Doczy, M., Doyle, B., Kavalieros, J., Metz, M.: High-k/metal–gate stack and its MOSFET characteristics. IEEE Electron Device Lett. 25, 408–410 (2004) CrossRefGoogle Scholar
  6. 6.
    Ribes, G., Mitard, J., Denais, M., Bruyere, S., Monsieur, F., Parthasarathy, C., Vincent, E., Ghibaudo, G.: Review on high-k dielectrics reliability issues. IEEE Trans. Device Mater. Reliab. 5, 5–19 (2005) CrossRefGoogle Scholar
  7. 7.
    Choi, J.H., Mao, Y., Chang, J.P.: Development of hafnium based high-k materials—a review. Mater. Sci. Eng. 72, 97–136 (2011) CrossRefGoogle Scholar
  8. 8.
    Larcher, L.: Simulation of leakage currents in MOS and flash memory devices with a new multiphonon trap-assisted-tunneling model. IEEE Trans. Electron Devices 50, 1246–1253 (2003) CrossRefGoogle Scholar
  9. 9.
    Padovani, A., et al.: Statistical modeling of leakage currents through SiO2/high-k dielectric stacks for non-volatile memory applications. In: Proc. IEEE Int. Rel. Phys. Symp, pp. 616–620 (2008) Google Scholar
  10. 10.
    Vandelli, L., Padovani, A., Larcher, L., Southwick, R.G. III, Knowlton, W.B., Bersuker, G.: Modeling temperature dependency (6–400 K) of the leakage current through the SiO2/high-k stacks. In: European Solid-State Device Research Conference (ESSDERC), pp. 388–391 (2010) Google Scholar
  11. 11.
    Vandelli, L., Padovani, A., Larcher, L., Southwick, R.G. III, Knowlton, W.B., Bersuker, G.: A physical model of the temperature dependence of the current through SiO2/HfO2 stacks. IEEE Trans. Electron Devices 58, 2878–2887 (2011) CrossRefGoogle Scholar
  12. 12.
    Vandelli, L., et al.: A physics-based model of the dielectric breakdown in HfO2 for statistical reliability prediction. In: Proc. IEEE Int. Rel. Phys. Symp, pp. 807–810 (2011) Google Scholar
  13. 13.
    Padovani, A., Larcher, L., Bersuker, G., Pavan, P.: Charge transport and degradation in HfO2 and HfOx dielectrics. IEEE Electron Device Lett. 34, 680–682 (2013) CrossRefGoogle Scholar
  14. 14.
    Vandelli, L., Padovani, A., Larcher, L., Bersuker, G.: Microscopic modeling of electrical stress-induced breakdown in poly-crystalline hafnium oxide dielectrics. IEEE Trans. Electron Devices 60, 1754–1762 (2013) CrossRefGoogle Scholar
  15. 15.
  16. 16.
    Yang, N., et al.: Modeling study of ultrathin gate oxides using direct tunneling current and capacitance-voltage measurements in MOS devices. IEEE Trans. Electron Devices 46, 1464–1471 (1999) CrossRefGoogle Scholar
  17. 17.
    Duke, C.B.: Tunneling in Solids. Academic Press, San Diego (1969) Google Scholar
  18. 18.
    Sze, S.M.: Physics of Semiconductor Devices. Wiley-Interscience, New York (1981) Google Scholar
  19. 19.
    Wentzel, G.: Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik. Z. Phys. 38, 518 (1926) CrossRefMATHGoogle Scholar
  20. 20.
    Muñoz Ramo, D., Gavartin, J.L., Shluger, A.L., Bersuker, G.: Spectroscopic properties of oxygen vacancies in monoclinic HfO2 calculated with periodic and embedded cluster density functional theory. Phys. Rev. B 75, 205336 (2007) CrossRefGoogle Scholar
  21. 21.
    Bersuker, G., et al.: Grain boundary-driven leakage path formation in HfO2 dielectrics. Solid-State Electron. 65–66, 146–150 (2011) CrossRefGoogle Scholar
  22. 22.
    McKenna, K.P., Shluger, A.: The interaction of oxygen vacancies with grain boundaries in monoclinic HfO2. Appl. Phys. Lett. 95, 222111 (2009) CrossRefGoogle Scholar
  23. 23.
    Yew, K.S., et al.: Nanoscale characterization of HfO2/SiOx gate stack degradation by Scanning Tunneling Microscopy. In: Proc. SSDM (2009) Google Scholar
  24. 24.
    Iglesias, V., et al.: Dielectric breakdown in polycrystalline hafnium oxide gate dielectrics investigated by conductive atomic force microscopy. J. Vac. Sci. Technol. B 29, 01AB02 (2011) CrossRefGoogle Scholar
  25. 25.
    McKenna, K., Shluger, A., Iglesias, V., Porti, M., Nafría, M., Lanza, M., Bersuker, G.: Grain boundary mediated leakage current in polycrystalline HfO2 films. Microelectron. Eng. 88, 1272–1275 (2011) CrossRefGoogle Scholar
  26. 26.
    Lanza, M., et al.: Resistive switching in hafnium dioxide layers: local phenomenon at grain boundaries. Appl. Phys. Lett. 101, 193502 (2012) CrossRefGoogle Scholar
  27. 27.
    Pirrotta, O., et al.: Simulations of conductive-atomic-force microscopy current through grains and grain boundaries in HfO2. J. Appl. Phys. 114(13), 134503 (2013) CrossRefGoogle Scholar
  28. 28.
    Ong, Y.C., et al.: Bilayer gate dielectric study by scanning tunneling microscopy. Appl. Phys. Lett. 91, 102905 (2007) CrossRefGoogle Scholar
  29. 29.
    Pey, K.L., et al.: Breakdowns in high-k gate stacks of nano-scale CMOS devices. Microelectron. Eng. 80, 353–361 (2005) CrossRefGoogle Scholar
  30. 30.
    McPherson, J., Kim, J.Y., Shanware, A., Mogul, H.: Thermochemical description of dielectric breakdown in high dielectric constant materials. Appl. Phys. Lett. 82, 2121–2123 (2003) CrossRefGoogle Scholar
  31. 31.
    McPherson, J.W.: Time dependent dielectric breakdown physics—models revisited. Microelectron. Reliab. 52, 1753–1760 (2012) CrossRefGoogle Scholar
  32. 32.
    Larcher, L., Padovani, A., Pirrotta, O., Vandelli, L., Bersuker, G.: Microscopic understanding and modeling of HfO2 RRAM device physics. IEDM Tech. Dig. 474–477 (2012) Google Scholar
  33. 33.
    Raghavan, N., Padovani, A., Wu, X., Shubhakar, K., Bosman, M., Larcher, L., Pey, K.L.: The “buffering” role of high-h in post breakdown degradation immunity of advanced dual layer dielectric gate stacks. In: 51th IEEE International Reliability Physics Symposium (IEEE IRPS), Monterey (CA), USA, April 14–18, 2013, pp. 5A.3.1–5A.3.8 (2013) Google Scholar
  34. 34.
    Padovani, A., Raghavan, N., Larcher, L., Pey, K.L.: Identifying the first layer to fail in dual layer SiOx/HfSiON gate dielectric stacks. IEEE Electron Device Lett. 34(10), 1289–1291 (2013) CrossRefGoogle Scholar
  35. 35.
    Bersuker, G., et al.: Mechanism of high-κ dielectric-induced breakdown of interfacial SiO2 layer. In: IEEE Int. Rel. Phys. Symp., pp. 373–378 (2010) Google Scholar
  36. 36.
    Shubhakar, K., et al.: Study of preferential localized degradation and breakdown of HfO2/SiOx dielectric stacks at grain boundary sites of polycrystalline HfO2 dielectrics. Microelectron. Eng. 109, 365–369 (2013) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Luca Larcher
    • 1
    • 2
  • Andrea Padovani
    • 1
    • 2
  • Luca Vandelli
    • 1
    • 2
  1. 1.DISMIUniversità di Modena e Reggio EmiliaReggio EmiliaItaly
  2. 2.MDLabSaint ChristopheItaly

Personalised recommendations