Skip to main content
Log in

Multilevel modeling for charge transport in Ovonic chalcogenide materials and devices

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A sound physical model for electric conduction in Ovonic materials is presented. Trap-limited conduction is assumed to determine the part of the I(V) curve below the characteristic threshold of these materials. Band transport comes into play at and above threshold, where the cooperative electron-electron interactions couple the conduction band with the traps. The model can be implemented into numerical simulations at different levels, ranging from the description of nanometric systems of simple geometry to device simulation of complex structures based on chalcogenide glasses used for phase-change memories. Simulations incorporating Poisson self-consistency provide information about the electric field, carrier concentration, and electron temperature along the device, giving a clear physical picture of the Ovonic process. Device-simulation models provide a compact and flexible formalism suitable for tailoring technologically-relevant features like, e.g., the threshold voltage, the effect of external contacts, and the electric field inside the device. The results of the multilevel simulations account for and interpret the main experimental findings in phase-change memory cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kolomiets, B.T., Goryunova, N.A.: Properties and structure of ternary semiconductor systems. J. Technol. Phys. 25, 984 (1955)

    Google Scholar 

  2. Ovshinsky, S.R.: Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21, 1450–1453 (1968)

    Article  Google Scholar 

  3. Wong, H.-S.P., Raoux, S., SangBum, K., Jiale, L., Reifenberg, J.P., Rajendran, B., Asheghi, M., Goodson, K.E.: Phase Change Memory. Proc. IEEE 98, 2201–2227 (2010)

    Article  Google Scholar 

  4. Owen, A., Robertson, J., Main, C.: The threshold characteristics of chalcogenide-glass memory switches. J. Non-Cryst. Solids 32, 29 (1979)

    Article  Google Scholar 

  5. Bogoslovskiy, N., Tsendin, K.: Physics of switching and memory effects in chalcogenide glassy semiconductors. Semiconductors 46, 559 (2012)

    Article  Google Scholar 

  6. Adler, D., Henisch, H.K., Mott, S.N.: The mechanism of threshold switching in amorphous alloys. Rev. Mod. Phys. 50, 209 (1978)

    Article  Google Scholar 

  7. Adler, D., Shur, M.S., Silver, M., Ovshinsky, S.R.: Threshold switching in chalcogenide-glass thin films. J. Appl. Phys. 51, 3289 (1980)

    Article  Google Scholar 

  8. Karpov, V.G., Kryukov, Y.A., Savransky, S.D., Karpov, I.V.: Nucleation switching in phase change memory. Appl. Phys. Lett. 90, 123504 (2007)

    Article  Google Scholar 

  9. Simon, M., Nardone, M., Karpov, V.G., Karpov, I.V.: Conductive path formation in glasses of phase change memory. J. Appl. Phys. 108, 064514 (2010)

    Article  Google Scholar 

  10. Pirovano, A., Lacaita, A., Benvenuti, A., Pellizzer, F., Bez, R.: Electronic switching in phase-change memories. IEEE Trans. Electron Devices 51, 452 (2004)

    Article  Google Scholar 

  11. Buscemi, F., Piccinini, E., Brunetti, R., Rudan, M., Jacoboni, C.: Monte Carlo simulation of charge transport in amorphous chalcogenides. J. Appl. Phys. 106, 103706 (2009)

    Article  Google Scholar 

  12. Jacoboni, C., Piccinini, E., Buscemi, F., Cappelli, A.: Hot-electron conduction in Ovonic materials. Solid-State Electron. 84, 90–95 (2013)

    Article  Google Scholar 

  13. Nardone, M., Simon, M., Karpov, I.V., Karpov, V.G.: Electrical conduction in chalcogenide glasses of phase change memory. J. Appl. Phys. 112, 071101 (2012)

    Article  Google Scholar 

  14. Ielmini, D., Zhang, Y.: Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices. J. Appl. Phys. 102, 054517 (2007)

    Article  Google Scholar 

  15. Ielmini, D.: Threshold switching mechanism by high-field energy gain in the hopping transport of chalcogenide glasses. Phys. Rev. B 78, 035308 (2008)

    Article  Google Scholar 

  16. Ielmini, D., Zhang, Y.: Evidence for trap-limited transport in the subthreshold conduction regime of chalcogenide glasses. Appl. Phys. Lett. 90, 192102 (2007)

    Article  Google Scholar 

  17. Buscemi, F., et al.: Quantum electronic trap to band transitions in chalcogenides induced by electron-electron interaction. In: Proc. SISPAD-2011, Osaka, p. 231 (2011)

    Google Scholar 

  18. www.synopsys.com/tools/tcad/, Synopsys, Sentaurus Device, v. G-2012

  19. Rudan, M., Buscemi, F., Marcolini, G., Giovanardi, F., Cappelli, A., Piccinini, E., Brunetti, R.: Many-level trap-to-band transitions in chalcogenide memories. In: Proc. SISPAD 2012, Denver, CO (2012)

    Google Scholar 

  20. Cappelli, A., Piccinini, E., Xiong, F., Benham, A., Brunetti, R., Rudan, M., Pop, E., Jacoboni, C.: Conductive preferential paths of hot carriers in amorphous phase-change materials. Appl. Phys. Lett. 103, 083503 (2013)

    Article  Google Scholar 

  21. Piccinini, E., Cappelli, A., Xiong, F., Benham, A., Buscemi, F., Brunetti, R., Rudan, M., Pop, E., Jacoboni, C.: Novel 3D random-network model for threshold switching of phase-change memories. IEDM 2013 Tech. Digest (2013, in press)

  22. Piccinini, E., Cappelli, A., Buscemi, F., Brunetti, R., Ielmini, D., Rudan, M., Jacoboni, C.: Hot-carrier trap-limited transport in switching chalcogenides. J. Appl. Phys. 112, 083722 (2012)

    Article  Google Scholar 

  23. Taschini, S., Rudan, M., Brunetti, R.: Particle and energy fluxes in semiconductors: Full-band hydrodynamic equations and the thermodynamic limit. Phys. Rev. B 60, 13582–13591 (1999)

    Article  Google Scholar 

  24. Akola, J., Jones, R.O.: Structural phase transitions on the nanoscale: The crucial pattern in the phase-change materials Ge2Sb2Te5 and GeTe. Phys. Rev. B 76, 235201 (2007)

    Article  Google Scholar 

  25. Caravati, S., Bernasconi, M., Kühne, T.D., Krack, M., Parrinello, M.: First-principles study of crystalline and amorphous Ge2Sb2Te5 and the effects of stoichiometric defects. J. Phys. Condens. Matter 21, 255501 (2009)

    Article  Google Scholar 

  26. Cho, E., Im, J., Park, C., Son, W.J., Kim, D.H., Horii, H., et al.: Atomic and electronic structures of amorphous Ge2Sb2Te5; melt-quenched versus ideal glasses. J. Phys. Condens. Matter 22, 205504 (2010)

    Article  Google Scholar 

  27. Rudan, M., Giovanardi, F., Piccinini, E., Buscemi, F., Brunetti, R., Jacoboni, C.: Voltage snapback in amorphous-gst memory devices: Transport model and validation. IEEE Trans. Electron Devices 58, 4361 (2011)

    Article  Google Scholar 

  28. Xiong, F., Liao, A.D., Estrada, D., Pop, E.: Low-power switching of phase-change materials with carbon nanotube electrodes. Science 332, 568–570 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The Authors acknowledge the financial support from the Intel Corporation under Contract No. 3477131/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rudan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudan, M., Giovanardi, F., Piccinini, E. et al. Multilevel modeling for charge transport in Ovonic chalcogenide materials and devices. J Comput Electron 12, 666–674 (2013). https://doi.org/10.1007/s10825-013-0521-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-013-0521-4

Keywords

Navigation