Skip to main content
Log in

Process modeling for doped regions formation on high efficiency crystalline silicon solar cells

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Process modeling approaches derived from CMOS industry are successfully applied in the Photovoltaic industry, in order to provide guidance on the design of the doped regions. The accurate prediction of the dopant diffusion and activation kinetics, as well the oxide growth rate, are essential for the adequate profile engineering. The latter is vital for a cost effective optimization of the cell operation. In addition, in the case of ion implantation, TCAD modeling is also necessary for the monitoring of the damage evolution and its optimized reduction. Indeed, high levels of residual defects are found to deteriorate the electrical properties of the doped regions, as they act as recombination centers for Shockley-Read-Hall recombination and thus limit the minority carrier lifetimes. Designing optimum anneal strategies is an important objective of the TCAD modeling approach. In this paper we are presenting an overview of our developments to optimize TCAD simulations for doped regions formation used in high efficiency crystalline silicon solar cells. The modeling studies cover the two major dopant techniques (tube diffusion and ion implantation) for each dopant (Boron and Phosphorus).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Poortmans, J., Baert, K., Hozel, J., Posthuma, N., John, J., Flamand, G., Gordon, I., Bruynseels, F., Mertens, R.: Where photovoltaics meets microelectronics. Energy Proc. 15, 40–49 (2012). International Conference on Materials for Advanced Technologies 2011, Symposium O

    Article  Google Scholar 

  2. Altermatt, P.P.: Models for numerical device simulations of crystalline silicon solar cells—a review. J. Comput. Electron. 10, 314–330 (2011)

    Article  Google Scholar 

  3. Powell, D.M., Winkder, M.T., Choi, H.J., Simmons, C.B., Berney Needleman, D., Buonassisi, T.: Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs. Energy Environ. Sci. 5, 5874 (2012)

    Article  Google Scholar 

  4. International Technology Roadmap for Photovoltaic: Results 2011. www.ITRPV.net

  5. Green, M.A., Zhao, J., Wang, A., Wenham, S.R.: Very high efficiency silicon solar cells-science and technology. IEEE Trans. Electron Devices 46(10), 1940–1947 (1999)

    Article  Google Scholar 

  6. Swanson, R.: Method of fabricating back surface point contact solar cells. U.S. Patent No. 4,927,770 (1990)

  7. Sunpower press release: Gen-3 IBC cell (12 May 2008)

  8. Rubin, L.: Crystalline silicon solar cells and modules. In: Fraas, L., Partain, L. (eds.) Solar Cells and Their Applications, 2nd edn., pp. 111–136. Wiley, New York (2010)

    Chapter  Google Scholar 

  9. Janssens, T., Posthuma, N.E., Pawlak, B.J., Rosseel, E., Poortmans, J.: Implantation for an excellent definition of doping profiles is Si solar cells. In: Proc. 25th EUPSEV Conference, pp. 1179–1181 (2010)

    Google Scholar 

  10. Synopsys Sentaurus Process User’s manual, release G-2012.06. Synopsys Inc., Zurich, Switzerland

  11. Athena User’s Manual Release Notes 2012. Silvaco International

  12. Synopsys Taurus TSUPREM-4 User’s manual, release Z-2007.03. Synopsys Inc., Zurich, Switzerland

  13. Massoud, H.Z., Plummer, J.D., Irene, E.A.: Thermal oxidation of silicon in dry oxygen. Growth-rate enhancement in the thin regime. J. Electrochem. Soc. 132(7), 1745–1753 (1985)

    Article  Google Scholar 

  14. Plummer, J.D., Deal, M.D., Griffin, P.B.: Thermal oxidation and the Si/SiO2 interface. In: Silicon VLSI Technology: Fundamentals, Practice and Modeling, pp. 343–345. Prentice Hall, New York (2000)

    Google Scholar 

  15. Declerck, G.J.: Silicon oxidation. In: Levy, R.A. (ed.) Microelectronic Materials and Processes, p. 86. Springer, Berlin (1989)

    Google Scholar 

  16. Strecker, N., Moroz, V., Jaraiz, M.: Introducing Monte Carlo diffusion simulation into TCAD tools. In: Technical Proceedings of the International Conference on Modeling and Simulation of Microsystems (Nanotech 2002), San Juan, Puerto Rico, USA, vol. 1, pp. 462–465 (2002)

    Google Scholar 

  17. Fisicaro, G., Italia, M., Privitera, V., Piccitto, G., Huet, K., Venturini, J., La Magna, A.: Solid phase phosphorous activation in implanted silicon by excimer laser irradiation. J. Appl. Phys. 109, 113513 (2011). doi:10.1063/1.3592262

    Article  Google Scholar 

  18. Plummer, J.D., Deal, M.D., Griffin, P.B.: Ion implantation. In: Silicon VLSI Technology: Fundamentals, Practice and Modeling, p. 479. Prentice Hall, New York (2000)

    Google Scholar 

  19. Cristiano, F., Lamrani, Y., Severac, F., Gavelle, M., Boninelli, S., Cherkashin, N., Marcelot, O., Claverie, A., Lerch, W., Paul, S., Cowern, N.: Defects evolution and dopant activation anomalies in ion implanted silicon. Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 253, 68–79 (2006)

    Article  Google Scholar 

  20. Pan, G.Z., Tu, K.N., Prussin, A.: Size-distribution and annealing behavior of EOR dislocation loops in silicon-implanted silicon. J. Appl. Phys. 81, 78 (1997). doi:10.1063/1.364099

    Article  Google Scholar 

  21. Pawlak, B.J., Janssens, T., Singh, S., Kuzma-Filipek, I., Robbelein, J., Posthuma, N.E., Poortmans, J., Cristiano, F., Bazizi, E.M.: Studies of implanted boron emitters for solar cell applications. Prog. Photovolt. (2011). doi:10.1002/pip.1106

    Google Scholar 

  22. Florakis, A., Vandervorst, W., Janssens, T., Rosseel, E., Douhard, B., Delmotte, J., Cornagliotti, E., Baert, K., Posthuma, N.E., Poortmans, J.: Simulation of the post-implantation anneal for emitter profile optimization in high efficiency c-Si solar cells. In: AIP Conf. Proc., vol. 1496, pp. 206–211 (2012). doi:10.1063/1.4766525

    Google Scholar 

  23. Synopsys Sentaurus Process Advanced Calibration User’s manual, release G-2012.06. Synopsys Inc., Zurich, Switzerland

  24. Bonafos, C., Mathiot, D., Claverie, A.: Ostwald ripening of end-of-range defects in silicon. J. Appl. Phys. 83, 3008 (1998). doi:10.1063/1.367056

    Article  Google Scholar 

  25. Christiano, F., Cherkashin, N., Hebras, X., Calvo, P., Lamrani, Y., Scheid, E., de Mauduit, B., Colombeau, B., Lerch, W., Paul, S., Claverie, A.: Ion beam induced defects in crystalline silicon. Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 216, 46–56 (2004)

    Article  Google Scholar 

  26. Florakis, A., Janssens, T., Rosseel, E., Douhard, B., Delmotte, J., Cornagliotti, E., Poortmans, J., Vandervorst, W.: Simulation of the anneal of ion implanted boron emitters and the impact on the saturation current density. Energy Proc. 27, 240–246 (2012)

    Article  Google Scholar 

  27. King, R.R., Swanson, R.M.: Studies of diffused boron emitter: saturation current, bandgap narrowing, and surface recombination velocity. IEEE Trans. Electron Devices 38(6), 1399–1409 (1991)

    Article  Google Scholar 

  28. Altermatt, P.P., Schenk, A., Geelhaar, F., Heiser, G.: Reassessment of the intrinsic carrier density in crystalline silicon in view of band-gap narrowing. J. Appl. Phys. 93, 1598 (2003). doi:10.1063/1.1529297

    Article  Google Scholar 

  29. Misiakos, K., Tsamakis, D.: Accurate measurements of the silicon intrinsic carrier density from 78 to 340 K. J. Appl. Phys. 74, 3293 (1993). doi:10.1063/1.354551

    Article  Google Scholar 

  30. Mok, K.R.C., Naber, R.C.G., Nanver, L.K.: Insights to emitter saturation current densities of boron implanted samples based on defects simulations. In: AIP Conf. Proc., vol. 1496, pp. 245–248 (2012). doi:10.1063/1.4766534

    Google Scholar 

  31. Ortiz, C.J., Cristiano, F., Colombeau, B., Claverie, A., Cowern, N.E.B.: Modeling of extrinsic extended defect evolution in ion-implanted silicon upon thermal annealing. Mater. Sci. Eng. B, Solid-State Mater. Adv. Technol. 114–115, 184–192 (2004)

    Article  Google Scholar 

  32. Ortiz, C.J., Pichler, P., Fühner, T., Cristiano, F., Colombeau, B., Cowern, N.E.B., Claverie, A.: A physically based model for the spatial and temporal evolution of self-interstitial agglomerates in ion-implanted silicon. J. Appl. Phys. 96, 4866 (2004). doi:10.1063/1.1786678

    Article  Google Scholar 

  33. Lampin, E., Cristiano, F., Lamrani, Y., Claverie, A., Colombeau, B., Cowern, N.E.B.: Prediction of boron transient enhanced diffusion through the atom-by-atom modeling of extended defects. J. Appl. Phys. 94, 7520 (2003). doi:10.1063/1.1627461

    Article  Google Scholar 

  34. Baterman, N., Sullivan, P., Reichel, C., Benick, J., Hermle, M.: High quality ion implanted boron emitters in an interdigitated back contact cell with 20 % efficiency. Energy Proc. 8, 509–514 (2011)

    Article  Google Scholar 

  35. Benick, J., Bateman, N., Hermle, M.: Very low emitter saturation current densities on ion implanted Boron emitters. In: 25th European Photovoltaic Solar Energy Conference Proceedings, pp. 1169–1173 (2010)

    Google Scholar 

  36. Florakis, A., Janssens, T., Posthuma, N., Delmotte, J., Douhard, B., Poortmans, J., Vandervorst, W.: Simulation of the Phosphorus profiles in a c-Si solar cell fabricated using POCl3 diffusion or Ion Implantation and annealing. Energy Proc., in press

  37. Rafferty, C.S., Gilmer, G.H., Jaraiz, M., Eaglesham, D., Gossmann, H.-J.: Simulation of cluster evaporation and transient enhanced diffusion in silicon. Appl. Phys. Lett. 68, 2395 (1996). doi:10.1063/1.116145

    Article  Google Scholar 

  38. Huang, R.Y.S., Dutton, R.W.: Experimental investigation and modeling of the role of extended defects during thermal oxidation. J. Appl. Phys. 74(9), 5821–5827 (1993)

    Article  Google Scholar 

  39. Lanterne, A., Gall, S., Manuel, S., Monna, R., Ramappa, D., Yuan, M., Rivalin, P., Tauzin, A.: Annealing, passivation and contacting of ion implanted phosphorus emitter solar cells. Energy Proc. 27, 580–585 (2012)

    Article  Google Scholar 

  40. Benick, J., Muller, R., Bateman, N., Hermle, M.: Fully implanted n-type PERT solar cells. In: 27th European Photovoltaic Solar Energy Conference and Exhibition, pp. 676–679 (2012)

    Google Scholar 

  41. Pichler, P.: Intrinsic Point Defects, Impurities, and Their Diffusion in Silicon. Series of Computational Microelectronics. Springer, Vienna (2004)

    Book  Google Scholar 

  42. Solmi, S., Parisini, A., Angelucci, R., Armigliato, A., Nobili, D., Moro, L.: Dopant and carrier concentration in Si in equilibrium with monoclinic SiP precipitates. Phys. Rev. B 53(12), 7836–7841 (1996)

    Article  Google Scholar 

  43. Micard, G., Dastgheib-Shirazi, A., Raabe, B., Hahn, G.: Diffusivity analysis of POCl3 emitter SIMS profiles for semi empirical parametrization in sentaurus process. In: Proceedings of 26th EU PVSEC, Hamburg, pp. 1446–1450 (2011). doi:10.4229/26thEUPVSEC2011-2BV.2.16

    Google Scholar 

  44. Dutton, R.W., Fahey, P., Doganis, K., Mei, L., Lee, H.G.: Computer-aided process modeling for design and process control. In: Gupta, D.C. (ed.) Silicon Processing. ASTM, vol. 804, pp. 407–421 (1983)

    Chapter  Google Scholar 

  45. Bentzen, A., Holt, A., Christensen, J.S., Svensson, B.G.: High concentration in-diffusion of phosphorus in Si from a spray-on source. J. Appl. Phys. 99, 064502 (2006). doi:10.1063/1.2179197

    Article  Google Scholar 

  46. Ghostagore, R.: The kinetics of open tube phosphorus diffusion in Silicon. Solid State Electron. (1978). doi:10.1016/0038-1101(78)90372-6

  47. Micard, G., Dastgheib-Shirazi, A., Steyer, M., Wagner, H., Altermatt, P., Hahn, G.: Advances in the understanding of phosphorus silicide glass (PSG) formation for accurate process simulation of phosphorus diffusion. In: 27th European Photovoltaic Solar Energy Conference and Exhibition, Frankfurt, pp. 1353–1359 (2012)

    Google Scholar 

  48. Savitzky, A., Golay, M.J.E.: Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36(8), 1627–1639 (1964)

    Article  Google Scholar 

  49. Schön, J., Warta, W.: Simulation of phosphorus diffusion and iron gettering with sentaurus process. In: 23rd European Photovoltaic Solar Energy Conference and Exhibition, Valencia, pp. 1851–1854 (2008). doi:10.4229/23rdEUPVSEC2008-2DV.1.4

    Google Scholar 

  50. Ok, Y.W., Rohatgi, A., Ki, Y.H., Park, S.E., Kim, D.H., Lee, J.S., Choi, C.J.: Abnormal dopant distribution in POCl3-diffused N+ emitter of textured silicon solar cells. IEEE Electron Device Lett. 32(3), 351–353 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonios Florakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Florakis, A., Janssens, T., Poortmans, J. et al. Process modeling for doped regions formation on high efficiency crystalline silicon solar cells. J Comput Electron 13, 95–107 (2014). https://doi.org/10.1007/s10825-013-0487-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-013-0487-2

Keywords

Navigation