Zurek, W.H.: Rev. Mod. Phys. 75(3), 715 (2003)
MathSciNet
MATH
Article
Google Scholar
Vacchini, B., Hornberger, K.: Relaxation dynamics of a quantum Brownian particle in an ideal gas. Eur. Phys. J. Spec. Top. 151, 59–72 (2007)
Article
Google Scholar
Halliwell, J.J.: Two derivations of the master equation of quantum Brownian motion. J. Phys. A, Math. Theor. 40, 3067–3080 (2007)
MathSciNet
MATH
Article
Google Scholar
Hofheinz, M., Wang, H., Ansmann, M., Bialczak, R.C., Lucero, E., Neeley, M., O’Connell, A.D., Sank, D., Wenner, J., Martinis, J.M., Cleland, A.N.: Synthesizing arbitrary quantum states in a superconducting resonator. Nature 459, 546–549 (2009)
Article
Google Scholar
Ferry, D.K., Akis, R., Bird, J.P.: Einselection in action: decoherence and pointer states in open quantum dots. Phys. Rev. Lett. 93, 026803 (2004)
Article
Google Scholar
Knezevic, I.: Decoherence due to contacts in ballistic nanostructures. Phys. Rev. B 77, 125301 (2008)
Article
Google Scholar
Joos, E., Zeh, H.D., Kiefer, C., Giulini, D.J.W., Kupsch, J., Stamatescu, I.O.: Decoherence and the Appearance of a Classical World in Quantum Theory. Springer, Berlin (2003)
Book
Google Scholar
Pastawski, H.M., Foa Torres, L.E.F., Medina, E.: Electron-phonon interaction and electronic decoherence in molecular conductors. Chem. Phys. 281, 257–278 (2002)
Article
Google Scholar
Buscemi, F., Cancellieri, E., Bordone, P., Bertoni, A., Jacoboni, C.: Electron decoherence in a semiconductor due to electron-phonon scattering. Physica Status Solidi (c) 5, 52–55 (2008)
Article
Google Scholar
Querlioz, D., Dollfus, P.: The Wigner Monte Carlo Method for Nanoelectronic Devices—A Particle Description of Quantum Transport and Decoherence. ISTE-Wiley, New York (2010)
MATH
Google Scholar
Nedjalkov, M., Selberherr, S., Ferry, D.K., Vasileska, D., Dollfus, P., Querlioz, D., Dimov, I., Schwaha, P.: Physical scales in the Wigner-Boltzmann equation. Ann. Phys. 328, 220–237 (2012)
MathSciNet
Google Scholar
Jacoboni, C., Brunetti, R., Bordone, P., Bertoni, A.: Quantum transport and its simulation with the Wigner-function approach. Int. J. High Speed Electron. Syst. 11, 387–423 (2001)
Google Scholar
Nedjalkov, M., Querlioz, D., Dollfus, P., Kosina, H.: Wigner function approach. In: Vasileska, D., Goodnick, S. (eds.) Nano-Electronic Devices: Semiclassical and Quantum Transport Modeling, pp. 289–358. Springer, New York (2011)
Chapter
Google Scholar
Shifren, L., Ringhofer, C., Ferry, D.K.: A Wigner function-based quantum ensemble Monte Carlo study of a resonant tunneling diode. IEEE Trans. Electron Devices 50, 769–773 (2003)
Article
Google Scholar
Querlioz, D., Saint-Martin, J., Nam Do, V., Bournel, A., Dollfus, P.: A study of quantum transport in end-of-roadmap DG-MOSFETs using a fully self-consistent Wigner Monte Carlo approach. IEEE Trans. Nanotechnol. 5, 737–744 (2006)
Article
Google Scholar
Querlioz, D., Nha Nguyen, H., Saint-Martin, J., Bournel, A., Galdin- Retailleau, S., Dollfus, P.: Wigner-Boltzmann Monte Carlo approach to nanodevice simulation: from quantum to semiclassical transport. J. Comput. Electron. 8, 324–335 (2009)
Article
Google Scholar
Nedjalkov, M., Kosina, H., Selberherr, S., Ringhofer, C., Ferry, D.K.: Unified particle approach to Wigner-Boltzmann transport in small semiconductor devices. Phys. Rev. B 70, 115319 (2004)
Article
Google Scholar
Sverdlov, V., Grasser, T., Kosina, H., Selberherr, S.: Scattering and spacecharge effects in Wigner Monte Carlo simulations of single and double barrier devices. J. Comput. Electron. 5, 447–450 (2006)
Article
Google Scholar
Manfredi, G., Feix, M.R.: Entropy and Wigner functions. Phys. Rev. E 62, 4665–4674 (2000)
Article
Google Scholar