Abstract
Electrons in the active region of a nanostructure constitute an open many-body quantum system, interacting with contacts, phonons, and photons. We review the basic premises of the open system theory, focusing on the common approximations that lead to Markovian and non-Markovian master equations for the reduced statistical operator. We highlight recent progress on the use of master equations in quantum transport, and discuss the limitations and potential new directions of this approach.
This is a preview of subscription content, access via your institution.





References
Alicki, R., Lendi, K.: Quantum Dynamical Semigroups and Applications. Lecture Notes in Physics, vol. 286. Springer, Berlin (1987)
Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)
Breuer, H.P., Laine, E.M., Piilo, J.: Phys. Rev. Lett. 103, 210401 (2009)
Chruściński, D., Kossakowski, A.: Phys. Rev. Lett. 104, 070406 (2010)
Rivas, A., Huelga, S.F., Plenio, M.B.: Phys. Rev. Lett. 105, 050403 (2010)
Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Phys. Rev. Lett. 101, 150402 (2008)
Liu, B.H., Li, L., Huang, Y.F., Li, C.F., Guo, G.C., Laine, E.M., Breuer, H.P., Piilo, J.: Nat. Phys. 7, 931 (2011)
Frensley, W.R.: Rev. Mod. Phys. 62, 745 (1990)
Hedegård, P., Caldeira, A.O.: Phys. Scr. 35(5), 609 (1987)
Shi, W., Zhao, X., Yu, T.: http://arxiv.org/abs/1203.2219 (2012)
Gurvitz, S.A., Prager, Y.S.: Phys. Rev. B 53, 15932 (1996)
Ovchinnikov, I.V., Neuhauser, D.A.: J. Chem. Phys. 122, 024707 (2005)
Fischetti, M.V.: Phys. Rev. B 59, 4901 (1999)
Lindblad, G.: J. Phys. A 29, 4197 (1996)
Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: J. Math. Phys. 17, 821 (1976)
Lindblad, G.: Commun. Math. Phys. 48, 199 (1976)
Davies, E.B.: Commun. Math. Phys. 39, 91 (1974)
van Hove, L.: Rev. Mod. Phys. 21, 517 (1955)
van Hove, L.: Physica 25, 268 (1959)
Chester, G.V.: Rep. Prog. Phys. 26, 411 (1963)
Lidar, D.A., Bihary, Z., Whaley, K.B.: Chem. Phys. 268, 35 (2001)
Haug, H., Jauho, A.P.: Quantum Kinetics in Transport and Optics of Semiconductors. Springer, Berlin (1998)
Stefanucci, G., van Leeuwen, R.: Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction. Cambridge University Press, Cambridge (2013)
Redfield, A.G.: IBM J. Res. Dev. 1, 19 (1957)
Fischetti, M.V.: J. Appl. Phys. 83, 270 (1998)
Gebauer, R., Car, R.: Phys. Rev. Lett. 93, 160404 (2004)
Wingreen, N.S., Jauho, A.P., Meir, Y.: Phys. Rev. B 48(11), 8487 (1993)
Jauho, A.P., Wingreen, N.S., Meir, Y.: Phys. Rev. B 50, 5528 (1994)
Nazarov, Y.: Physica B 189, 57 (1993)
Stoof, T.H., Nazarov, Y.V.: Phys. Rev. B 53, 1050 (1996)
Li, X.Q., Luo, J.Y., Yang, Y.G., Cui, P., Yan, Y.J.: Phys. Rev. B 71, 205304 (2005)
Harbola, U., Esposito, M., Mukamel, S.: Phys. Rev. B 74, 235309 (2006)
Esposito, M., Galperin, M.: J. Phys. Chem. C 114, 20362 (2010)
Pedersen, J.N., Wacker, A.: Phys. Rev. B 72, 195330 (2005)
Rivas, A., Huelga, S.F., Plenio, M.B.: Physica E 42, 595 (2010)
Karlström, O., Emary, C., Zedler, P., Pedersen, J.N., Bergenfeldt, C., Samuelsson, P., Brandes, T., Wacker, A.: J. Phys. A, Math. Theor. 46, 065301 (2013)
Stefanucci, G., Almbladh, C.O.: Phys. Rev. B 69, 195318 (2004)
Kraus, K.: Ann. Phys. 64, 311 (1971)
van Wonderen, A.J., Lendi, K.: Europhys. Lett. 71, 737 (2005)
Nakajima, S.: Prog. Theor. Phys. 20, 948 (1958)
Zwanzig, R.: J. Chem. Phys. 33, 1338 (1960)
Shibata, F., Takahashi, Y., Hashitsume, N.: J. Stat. Phys. 17, 171 (1977)
Knezevic, I., Ferry, D.K.: Phys. Rev. E 66, 016131 (2002)
Knezevic, I., Ferry, D.K.: Phys. Rev. A 69, 012104 (2004)
Timm, C.: Phys. Rev. B 77, 195416 (2008)
Lindberg, M., Koch, S.W.: Phys. Rev. B 38, 3342 (1988)
Bruder, C., Schoeller, H.: Phys. Rev. Lett. 72, 1076 (1994)
Vaz, E., Kyriakidis, J.: J. Phys. Conf. Ser. 107, 012012 (2008)
Vaz, E., Kyriakidis, J.: Phys. Rev. B 81, 085315 (2010)
Vaz, E., Kyriakidis, J.: Phys. Rev. B 86, 235310 (2012)
Gudmundsson, V., Gainar, C., Tang, C.S., Moldoveanu, V., Manolescu, A.: New J. Phys. 11, 113007 (2009)
Rossi, F.: Theory of Semiconductor Quantum Devices. NanoScience and Technology. Springer, Heidelberg (2011)
Zedler, P., Schaller, G., Kiesslich, G., Emary, C., Brandes, T.: Phys. Rev. B 80, 045309 (2009)
Schaller, G., Brandes, T.: Phys. Rev. A 78, 022106 (2008)
Knezevic, I.: Phys. Rev. B 77, 125301 (2008)
Novakovic, B., Knezevic, I.: Fortschr. Phys. 61, 323 (2013)
Osman, M.A., Ferry, D.K.: Phys. Rev. B 36, 6018 (1987)
Kriman, A.M., Kann, M.J., Ferry, D.K., Joshi, R.: Phys. Rev. Lett. 65, 1619 (1990)
Lugli, P., Ferry, D.K.: IEEE Trans. Electron Devices 32, 2431 (1985)
Novakovic, B.: Quantum transport in the transient regime and unconventional geometries. Ph.D. thesis, University of Wisconsin–Madison (2012)
Nedjalkov, M., Kosina, H., Selberherr, S., Ringhofer, C., Ferry, D.K.: Phys. Rev. B 70, 115319 (2004)
Querlioz, D., Dollfus, P.: The Wigner Monte-Carlo Method for Nanoelectronic Devices: A Particle Description of Quantum Transport and Decoherence. ISTE. Wiley, New York (2013)
Oriols, X.: Phys. Rev. Lett. 98, 066803 (2007)
Blatner, Y.M., Büttiker, M.: Phys. Rep. 336, 1 (2000)
Rossi, F., Kuhn, T.: Rev. Mod. Phys. 74, 895 (2002)
Wang, H., Thoss, M., Miller, W.H.: J. Chem. Phys. 115, 2979 (2001)
Thoss, M., Wang, H., Miller, W.H.: J. Chem. Phys. 115, 2991 (2001)
Caldeira, A., Leggett, A.: Physica A 121(3), 587 (1983)
Sakurai, A., Tanimura, Y.: J. Phys. Soc. Jpn. 82, 033707 (2013)
Velický, B., Kalvová, A., Śpička, V.: Phys. Rev. B 81, 235116 (2010)
Gabelli, J., Feve, G., Berroir, J.M., Placais, B., Cavanna, A., Etienne, B., Jin, Y., Glattli, D.C.: Science 313, 499 (2006)
Büttiker, M., Nigg, S.E.: Nanotechnology 18, 044029 (2007)
Knezevic, I., Ferry, D.K.: Phys. Rev. E 67, 066122 (2003)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work has been supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under award DE-SC0008712.
Rights and permissions
About this article
Cite this article
Knezevic, I., Novakovic, B. Time-dependent transport in open systems based on quantum master equations. J Comput Electron 12, 363–374 (2013). https://doi.org/10.1007/s10825-013-0474-7
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10825-013-0474-7
Keywords
- Quantum transport
- Master equation
- Non-Markovian
- Open system