Skip to main content
Log in

Time-dependent transport in open systems based on quantum master equations

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Electrons in the active region of a nanostructure constitute an open many-body quantum system, interacting with contacts, phonons, and photons. We review the basic premises of the open system theory, focusing on the common approximations that lead to Markovian and non-Markovian master equations for the reduced statistical operator. We highlight recent progress on the use of master equations in quantum transport, and discuss the limitations and potential new directions of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alicki, R., Lendi, K.: Quantum Dynamical Semigroups and Applications. Lecture Notes in Physics, vol. 286. Springer, Berlin (1987)

    Book  Google Scholar 

  2. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  3. Breuer, H.P., Laine, E.M., Piilo, J.: Phys. Rev. Lett. 103, 210401 (2009)

    Article  MathSciNet  Google Scholar 

  4. Chruściński, D., Kossakowski, A.: Phys. Rev. Lett. 104, 070406 (2010)

    Article  Google Scholar 

  5. Rivas, A., Huelga, S.F., Plenio, M.B.: Phys. Rev. Lett. 105, 050403 (2010)

    Article  MathSciNet  Google Scholar 

  6. Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Phys. Rev. Lett. 101, 150402 (2008)

    Article  MathSciNet  Google Scholar 

  7. Liu, B.H., Li, L., Huang, Y.F., Li, C.F., Guo, G.C., Laine, E.M., Breuer, H.P., Piilo, J.: Nat. Phys. 7, 931 (2011)

    Article  Google Scholar 

  8. Frensley, W.R.: Rev. Mod. Phys. 62, 745 (1990)

    Article  Google Scholar 

  9. Hedegård, P., Caldeira, A.O.: Phys. Scr. 35(5), 609 (1987)

    Article  Google Scholar 

  10. Shi, W., Zhao, X., Yu, T.: http://arxiv.org/abs/1203.2219 (2012)

  11. Gurvitz, S.A., Prager, Y.S.: Phys. Rev. B 53, 15932 (1996)

    Article  Google Scholar 

  12. Ovchinnikov, I.V., Neuhauser, D.A.: J. Chem. Phys. 122, 024707 (2005)

    Article  Google Scholar 

  13. Fischetti, M.V.: Phys. Rev. B 59, 4901 (1999)

    Article  Google Scholar 

  14. Lindblad, G.: J. Phys. A 29, 4197 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: J. Math. Phys. 17, 821 (1976)

    Article  MathSciNet  Google Scholar 

  16. Lindblad, G.: Commun. Math. Phys. 48, 199 (1976)

    Article  MathSciNet  Google Scholar 

  17. Davies, E.B.: Commun. Math. Phys. 39, 91 (1974)

    Article  MATH  Google Scholar 

  18. van Hove, L.: Rev. Mod. Phys. 21, 517 (1955)

    MATH  Google Scholar 

  19. van Hove, L.: Physica 25, 268 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chester, G.V.: Rep. Prog. Phys. 26, 411 (1963)

    Article  Google Scholar 

  21. Lidar, D.A., Bihary, Z., Whaley, K.B.: Chem. Phys. 268, 35 (2001)

    Article  Google Scholar 

  22. Haug, H., Jauho, A.P.: Quantum Kinetics in Transport and Optics of Semiconductors. Springer, Berlin (1998)

    MATH  Google Scholar 

  23. Stefanucci, G., van Leeuwen, R.: Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

  24. Redfield, A.G.: IBM J. Res. Dev. 1, 19 (1957)

    Article  Google Scholar 

  25. Fischetti, M.V.: J. Appl. Phys. 83, 270 (1998)

    Article  Google Scholar 

  26. Gebauer, R., Car, R.: Phys. Rev. Lett. 93, 160404 (2004)

    Article  Google Scholar 

  27. Wingreen, N.S., Jauho, A.P., Meir, Y.: Phys. Rev. B 48(11), 8487 (1993)

    Article  Google Scholar 

  28. Jauho, A.P., Wingreen, N.S., Meir, Y.: Phys. Rev. B 50, 5528 (1994)

    Article  Google Scholar 

  29. Nazarov, Y.: Physica B 189, 57 (1993)

    Article  Google Scholar 

  30. Stoof, T.H., Nazarov, Y.V.: Phys. Rev. B 53, 1050 (1996)

    Article  Google Scholar 

  31. Li, X.Q., Luo, J.Y., Yang, Y.G., Cui, P., Yan, Y.J.: Phys. Rev. B 71, 205304 (2005)

    Article  Google Scholar 

  32. Harbola, U., Esposito, M., Mukamel, S.: Phys. Rev. B 74, 235309 (2006)

    Article  Google Scholar 

  33. Esposito, M., Galperin, M.: J. Phys. Chem. C 114, 20362 (2010)

    Article  Google Scholar 

  34. Pedersen, J.N., Wacker, A.: Phys. Rev. B 72, 195330 (2005)

    Article  Google Scholar 

  35. Rivas, A., Huelga, S.F., Plenio, M.B.: Physica E 42, 595 (2010)

    Article  Google Scholar 

  36. Karlström, O., Emary, C., Zedler, P., Pedersen, J.N., Bergenfeldt, C., Samuelsson, P., Brandes, T., Wacker, A.: J. Phys. A, Math. Theor. 46, 065301 (2013)

    Article  Google Scholar 

  37. Stefanucci, G., Almbladh, C.O.: Phys. Rev. B 69, 195318 (2004)

    Article  Google Scholar 

  38. Kraus, K.: Ann. Phys. 64, 311 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  39. van Wonderen, A.J., Lendi, K.: Europhys. Lett. 71, 737 (2005)

    Article  MathSciNet  Google Scholar 

  40. Nakajima, S.: Prog. Theor. Phys. 20, 948 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zwanzig, R.: J. Chem. Phys. 33, 1338 (1960)

    Article  MathSciNet  Google Scholar 

  42. Shibata, F., Takahashi, Y., Hashitsume, N.: J. Stat. Phys. 17, 171 (1977)

    Article  MathSciNet  Google Scholar 

  43. Knezevic, I., Ferry, D.K.: Phys. Rev. E 66, 016131 (2002)

    Article  Google Scholar 

  44. Knezevic, I., Ferry, D.K.: Phys. Rev. A 69, 012104 (2004)

    Article  Google Scholar 

  45. Timm, C.: Phys. Rev. B 77, 195416 (2008)

    Article  Google Scholar 

  46. Lindberg, M., Koch, S.W.: Phys. Rev. B 38, 3342 (1988)

    Article  Google Scholar 

  47. Bruder, C., Schoeller, H.: Phys. Rev. Lett. 72, 1076 (1994)

    Article  Google Scholar 

  48. Vaz, E., Kyriakidis, J.: J. Phys. Conf. Ser. 107, 012012 (2008)

    Article  Google Scholar 

  49. Vaz, E., Kyriakidis, J.: Phys. Rev. B 81, 085315 (2010)

    Article  Google Scholar 

  50. Vaz, E., Kyriakidis, J.: Phys. Rev. B 86, 235310 (2012)

    Article  Google Scholar 

  51. Gudmundsson, V., Gainar, C., Tang, C.S., Moldoveanu, V., Manolescu, A.: New J. Phys. 11, 113007 (2009)

    Article  Google Scholar 

  52. Rossi, F.: Theory of Semiconductor Quantum Devices. NanoScience and Technology. Springer, Heidelberg (2011)

    Book  Google Scholar 

  53. Zedler, P., Schaller, G., Kiesslich, G., Emary, C., Brandes, T.: Phys. Rev. B 80, 045309 (2009)

    Article  Google Scholar 

  54. Schaller, G., Brandes, T.: Phys. Rev. A 78, 022106 (2008)

    Article  MathSciNet  Google Scholar 

  55. Knezevic, I.: Phys. Rev. B 77, 125301 (2008)

    Article  Google Scholar 

  56. Novakovic, B., Knezevic, I.: Fortschr. Phys. 61, 323 (2013)

    Article  MathSciNet  Google Scholar 

  57. Osman, M.A., Ferry, D.K.: Phys. Rev. B 36, 6018 (1987)

    Article  Google Scholar 

  58. Kriman, A.M., Kann, M.J., Ferry, D.K., Joshi, R.: Phys. Rev. Lett. 65, 1619 (1990)

    Article  Google Scholar 

  59. Lugli, P., Ferry, D.K.: IEEE Trans. Electron Devices 32, 2431 (1985)

    Article  Google Scholar 

  60. Novakovic, B.: Quantum transport in the transient regime and unconventional geometries. Ph.D. thesis, University of Wisconsin–Madison (2012)

  61. Nedjalkov, M., Kosina, H., Selberherr, S., Ringhofer, C., Ferry, D.K.: Phys. Rev. B 70, 115319 (2004)

    Article  Google Scholar 

  62. Querlioz, D., Dollfus, P.: The Wigner Monte-Carlo Method for Nanoelectronic Devices: A Particle Description of Quantum Transport and Decoherence. ISTE. Wiley, New York (2013)

    Book  Google Scholar 

  63. Oriols, X.: Phys. Rev. Lett. 98, 066803 (2007)

    Article  Google Scholar 

  64. Blatner, Y.M., Büttiker, M.: Phys. Rep. 336, 1 (2000)

    Article  Google Scholar 

  65. Rossi, F., Kuhn, T.: Rev. Mod. Phys. 74, 895 (2002)

    Article  Google Scholar 

  66. Wang, H., Thoss, M., Miller, W.H.: J. Chem. Phys. 115, 2979 (2001)

    Article  Google Scholar 

  67. Thoss, M., Wang, H., Miller, W.H.: J. Chem. Phys. 115, 2991 (2001)

    Article  Google Scholar 

  68. Caldeira, A., Leggett, A.: Physica A 121(3), 587 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  69. Sakurai, A., Tanimura, Y.: J. Phys. Soc. Jpn. 82, 033707 (2013)

    Article  Google Scholar 

  70. Velický, B., Kalvová, A., Śpička, V.: Phys. Rev. B 81, 235116 (2010)

    Article  Google Scholar 

  71. Gabelli, J., Feve, G., Berroir, J.M., Placais, B., Cavanna, A., Etienne, B., Jin, Y., Glattli, D.C.: Science 313, 499 (2006)

    Article  Google Scholar 

  72. Büttiker, M., Nigg, S.E.: Nanotechnology 18, 044029 (2007)

    Article  Google Scholar 

  73. Knezevic, I., Ferry, D.K.: Phys. Rev. E 67, 066122 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Knezevic.

Additional information

This work has been supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under award DE-SC0008712.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knezevic, I., Novakovic, B. Time-dependent transport in open systems based on quantum master equations. J Comput Electron 12, 363–374 (2013). https://doi.org/10.1007/s10825-013-0474-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-013-0474-7

Keywords

Navigation