Skip to main content
Log in

Regional approach to model charges and capacitances of intrinsic carbon nanotube field effect transistors

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Estimation of total channel charge (Q Tot ) of carbon nanotube field effect transistor from the self-consistently computed charge density (Q Top ) at the top of conduction band subband minima, is found to be inaccurate. A regional approach based on extended ballistic transport theory is proposed to model Q Tot , and its partitioning into source and drain components. The models for charges and subsequently derived capacitances are validated with the numerically simulated data obtained using semi-classical technique. The model agreement with numerical data shows the superiority of our regional approach compared to ones obtained from only the information of Q Top .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. McEuen, P.L., Fuhrer, M.S., Park, H.: Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol. 1, 78–85 (2002)

    Article  Google Scholar 

  2. Wind, S., Appenzeller, J., Martel, R., Derycke, V., Avouris, Ph.: Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes. Appl. Phys. Lett. 80, 3817–3819 (2002)

    Article  Google Scholar 

  3. Javey, A., Kim, H., Brink, M., Wang, Q., Ural, A., Guo, J., McIntyre, P., McEuen, P., Lundstrom, M., Dai, H.: High dielectrics for advanced carbon nanotube transistors and logic. Nature Materials (2002)

  4. Appenzeller, J., Knoch, J., Derycke, V., Martel, R., Wind, S., Avouris, Ph.: Field modulated carrier transport in carbon nanotube transistors. Phys. Rev. Lett. 89(12), 126801 (2002)

    Article  Google Scholar 

  5. Avouris, Ph., Appenzeller, J., Martel, R., Wind, J.S.: Carbon nanotube electronics. Proc. IEEE 91(11), 1772–1784 (2003)

    Article  Google Scholar 

  6. Javey, A., Guo, J., Wang, Q., Lundstrom, M.: Ballistic carbon nanotube field effect transistors. Nature 424, 654–657 (2003)

    Article  Google Scholar 

  7. Guo, J., Javey, A., Dai, H., Lundstrom, M.: Performance Analysis and Design Optimization of Near Ballistic Carbon Nanotube Field-Effect Transistors, IEEE IEDM tech. digest, 29.6.1–29.6.4 (2004)

  8. Koswatta, S.O., Lundstrom, M.S., Anantram, M.P., Nikonov, D.E.: Simulation of phonon-assisted band-to-band tunneling in carbon nanotube field-effect transistors. Appl. Phys. Lett. 87(1–3), 253107 (2005)

    Article  Google Scholar 

  9. Guo, J., Datta, S., Lundstrom, M.S., Anantram, M.P.: Towards multiscale modeling of carbon nanotube transistors. Int. J. Multiscale Computational Engineering, 257-276 (2004)

  10. Koswatta, S.O., Nikonov, D.E., Lundstrom, M.S.: Computational Study of Carbon Nanotube p-i-n Tunnel FETs, IEEE IEDM tech. digest, 518 (2005)

  11. Rhew, J.-H., Ren, Z., Lundstrom, M.: A numerical study of ballistic transport in a nanoscale MOSFET. Solid-State Electron. 46, 1899–1906 (2002)

    Article  Google Scholar 

  12. O’Connor, I., Liu, J., Gaffiot, F., Pregaldiny, F., Lallement, C., Maneux, C., Gognet, J., Fregonese, S., Zimmer, T., Anghel, L., Dang, T.-T., Leveugle, R.: CNTFET modeling and reconfigurable logic-circuit design. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 54(11), 2365–2379 (2007)

    Article  Google Scholar 

  13. Hazeghi, A., Krishnamohan, T., Philip Wong, H.-S.: Schottky-Barrier carbon nanotube field-effect transistor modeling. IEEE Trans. Electron Devices 54(3), 439–445 (2007)

    Article  Google Scholar 

  14. Najari, M., Fregonese, S., Maneux, C., Mnif, H., Zimmer, T., Masmoudi, N.: Efficient physics-based compact model for the Schottky barrier carbon nanotube FET. Phys. Status Solidi C-7 (11–12), 2624–2627 (2010)

  15. Guo, J., Datta, S., Lundstrom, M.: Assessment of silicon MOS and carbon nanotube FET performance limits using a general theory of ballistic transistors, IEEE IEDM tech. digest, 29.3.1–29.3.4 (2002)

  16. Natori, K.: Ballistic metal-oxide-semiconductor field effect transistor. J. Appl. Phys. 76, 4879–4890 (1994)

    Article  Google Scholar 

  17. Rahman, A., Guo, J., Datta, S., Lundstrom, M.: Theory of ballistic nanotransistors. IEEE Trans. Electron Devices 50(9), 1853–1864 (2003)

    Article  Google Scholar 

  18. Arora, N.: MOSFET Modeling for VLSI Simulation: Theory and Practice. World Scientific, Singapore (2007)

    Book  Google Scholar 

  19. Deng, J., Wong, H.-S.P.: A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application. Part I. Model of the intrinsic channel region. IEEE Trans. Electron Devices 54(12), 3186–3194 (2007)

    Article  Google Scholar 

  20. Raychowdhury, A., Mukhopadhyay, S., Roy, K.: A circuit-compatible model of ballistic carbon nanotube field-effect transistors. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 23(10), 1411–1420 (2004)

    Article  Google Scholar 

  21. Oh, S.-Y., Ward, D.E., Dutton, R.W.: Transient analysis of MOS transistors. IEEE J. Solid-State Circuits SC-15(4), 636–643 (1980)

    Google Scholar 

  22. McDonald, N.J.: Generalized partitioned charge based bipolar transistor modeling methodology. IEEE Electron Device Lett. 24(21), 1302–1304 (1988)

    Google Scholar 

  23. Datta, S.: Quantum Transport: Atom to Transistor. Cambridge Univ. Press, Cambridge (2005)

    MATH  Google Scholar 

  24. Lee, T.-H.: The Design of CMOS Radio-Frequency Integrated Circuits. Cambridge Univ. Press, Cambridge (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjan Chakravorty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sudheer, N.V., Chakravorty, A. Regional approach to model charges and capacitances of intrinsic carbon nanotube field effect transistors. J Comput Electron 11, 166–171 (2012). https://doi.org/10.1007/s10825-012-0391-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-012-0391-1

Keywords

Navigation