Journal of Computational Electronics

, Volume 11, Issue 1, pp 14–21 | Cite as

Study of thermal properties of graphene-based structures using the force constant method

  • Hossein Karamitaheri
  • Neophytos Neophytou
  • Mahdi Pourfath
  • Hans Kosina
Article

Abstract

The thermal properties of graphene-based materials are theoretically investigated. The fourth-nearest neighbor force constant method for phonon properties is used in conjunction with both the Landauer ballistic and the non-equilibrium Green’s function techniques for transport. Ballistic phonon transport is investigated for different structures including graphene, graphene antidot lattices, and graphene nanoribbons. We demonstrate that this particular methodology is suitable for robust and efficient investigation of phonon transport in graphene-based devices. This methodology is especially useful for investigations of thermoelectric and heat transport applications.

Keywords

Graphene Thermal properties Force constant method Non-equilibrium Green’s function Graphene antidots 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Novoselov, K., Geim, A., Morozov, S., Jiang, D., Zhang, Y., Dubonos, S., Grigorieva, I.: Science 306, 666 (2004) CrossRefGoogle Scholar
  2. 2.
    Liang, G., Neophytou, N., Lundstrom, M., Nikonov, D.: J. Appl. Phys. 102(5), 054307 (2007) CrossRefGoogle Scholar
  3. 3.
    Fiori, G., Iannaccone, G.: IEEE Electron Device Lett. 28(8), 760 (2007) CrossRefGoogle Scholar
  4. 4.
    Basu, D., Gilbert, M., Register, L., Banerjee, S., MacDonald, A.: Appl. Phys. Lett. 92, 042114 (2008) CrossRefGoogle Scholar
  5. 5.
    Leong, Z., Lam, K.T., Liang, G.: In: 13th International Workshop on Computational Electronics, pp. 1–4 (2009) Google Scholar
  6. 6.
    Falkovsky, L.: J. Phys. Conf. Ser. 129, 012004 (2008) CrossRefGoogle Scholar
  7. 7.
    Liu, M., Yin, X., Ulin-Avila, E., Geng, B., Zentgraf, T., Ju, L., Wang, F., Zhang, X.: Nature 474, 67 (2011) Google Scholar
  8. 8.
    Yuan, S., Roldan, R., Raedt, H., Katsnelson, M.: Phys. Rev. B 84(19), 195418 (2011) CrossRefGoogle Scholar
  9. 9.
    Balandin, A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.: Nano Lett. 8(3), 902 (2008) CrossRefGoogle Scholar
  10. 10.
    Ghosh, S., Calizo, I., Teweldebrahn, D., Pokatilov, E., Nika, D., Balandin, A., Bao, W., Miao, F., Lau, C.: Appl. Phys. Lett. 92, 151911 (2008) CrossRefGoogle Scholar
  11. 11.
    Hu, J., Schiffli, S., Vallabhaneni, A., Ruan, X., Che, Y.: Appl. Phys. Lett. 97, 133107 (2010) CrossRefGoogle Scholar
  12. 12.
    Ong, Z., Pop, E.: Phys. Rev. B 84(7), 075471 (2011) CrossRefGoogle Scholar
  13. 13.
    Chen, J.H., Jang, C., Xiao, S., Ishighami, M., Fuhrer, M.: Nat. Nanotechnol. 3(4), 206 (2008) CrossRefGoogle Scholar
  14. 14.
    Kim, K., Zhao, Y., Jang, H., Lee, S., Kim, J., Kim, K., Ahn, J.H., Kim, P., Choi, J.Y., Hong, B.: Nature 457, 706 (2009) CrossRefGoogle Scholar
  15. 15.
    Hone, J., Whitney, M., Piskoti, C., Zettl, A.: Phys. Rev. B 59, R2514 (1999) CrossRefGoogle Scholar
  16. 16.
    Sevincli, H., Cuniberti, G.: Phys. Rev. B 81, 113401 (2010) CrossRefGoogle Scholar
  17. 17.
    Aksamija, Z., Knezevic, I.: Appl. Phys. Lett. 98(14), 141919 (2011) CrossRefGoogle Scholar
  18. 18.
    Hu, J., Ruan, X., Chen, Y.: Nano Lett. 9(7), 2730 (2009) CrossRefGoogle Scholar
  19. 19.
    Karamitaheri, H., Pourfath, M., Faez, R., Kosina, H.: J. Appl. Phys. 110(5), 054506 (2011) CrossRefGoogle Scholar
  20. 20.
    Xie, Z.X., Chen, K.Q., Duan, W.: J. Phys., Condens. Matter 23, 315302 (2011) CrossRefGoogle Scholar
  21. 21.
    Zhang, H., Lee, G., Cho, K.: Phys. Rev. B 84(11), 115460 (2011) CrossRefGoogle Scholar
  22. 22.
    Haskins, J., Kinaci, A., Sevik, C., Sevincli, H., Cuniberti, G., Cagin, T.: ACS Nano 5(5), 3779 (2011) CrossRefGoogle Scholar
  23. 23.
    Jiang, J.W., Wang, B.S., Wang, J.S.: Appl. Phys. Lett. 98(11), 113114 (2011) MathSciNetCrossRefGoogle Scholar
  24. 24.
    Hao, F., Fang, D., Xu, Z.: Appl. Phys. Lett. 99(4), 041901 (2011) CrossRefGoogle Scholar
  25. 25.
    Ouyang, Y., Guo, J.: Appl. Phys. Lett. 94, 263107 (2009) CrossRefGoogle Scholar
  26. 26.
    Paul, A., Luisier, M., Klimeck, G.: J. Comput. Electron. 9, 160 (2010) CrossRefGoogle Scholar
  27. 27.
    Rego, L., Kirczenow, G.: Phys. Rev. Lett. 81, 232 (1998) CrossRefGoogle Scholar
  28. 28.
    Datta, S.: Quantum Transport: Atom to Transistor. Cambridge University Press, Cambridge (2005) MATHGoogle Scholar
  29. 29.
    Wang, J.S., Wang, J., Lu, J.: Eur. Phys. J. B 62(4), 381 (2008) CrossRefGoogle Scholar
  30. 30.
    Hochbaum, A., Chen, R., Delgado, R., Liang, W., Garnett, E., Najarian, M., Majumdar, A., Yang, P.: Nature 451(7175), 163 (2008) CrossRefGoogle Scholar
  31. 31.
    Boukai, A., Bunimovich, Y., Tahir-Kheli, J., Yu, J.K., Goddard, W., Heath, J.: Nature 451(7175), 168 (2008) CrossRefGoogle Scholar
  32. 32.
    Venkatasubramanian, R., Siivola, E., Colpitts, T., O’Quinn, B.: Nature 413(6856), 597 (2001) CrossRefGoogle Scholar
  33. 33.
    Nolas, G., Sharp, J., Goldsmid, H.: Thermoelectrics: Basic Principles and New Materials Developments. Springer, Berlin (2001) MATHGoogle Scholar
  34. 34.
    Seol, J., Jo, I., Moore, A., Lindsay, L., Aitken, Z., Pettes, M., Li, X., Yao, Z., Huang, R., Broido, D., Mingo, N., Ruoff, R., Shi, L.: Science 328(5975), 213 (2010) CrossRefGoogle Scholar
  35. 35.
    Han, M., Ozyilmaz, B., Zhang, Y., Kim, P.: Phys. Rev. Lett. 98, 206805 (2007) CrossRefGoogle Scholar
  36. 36.
    Pedersen, T., Flindt, C., Pedersen, J., Mortensen, N., Jauho, A.P., Pedersen, K.: Phys. Rev. Lett. 100(13), 136804 (2008) CrossRefGoogle Scholar
  37. 37.
    Karamitaheri, H., Pourfath, M., Faez, R., Kosina, H.: In: Dielectrics in Nanosystems -and- Graphene, Ge/III-V, Nanowires and Emerging Materials for Post-CMOS Applications 3. vol. 35, pp. 185–192. The Electrochemical Society, Montreal (2011) Google Scholar
  38. 38.
    Ye, L.H., Liu, B.G., Wang, D.S., Han, R.: Phys. Rev. B 69(23), 235409 (2004) CrossRefGoogle Scholar
  39. 39.
    Lobo, C., Martins, J.: Z. Phys. D 39, 159 (1997) CrossRefGoogle Scholar
  40. 40.
    Kusminskiy, S., Campbell, D., Neto, A.C.: Phys. Rev. B 80, 035401 (2009) CrossRefGoogle Scholar
  41. 41.
    Wirtz, L., Rubio, A.: Solid State Commun. 131(3–4), 141 (2004) CrossRefGoogle Scholar
  42. 42.
    Wang, H., Wang, Y., Cao, X., Feng, M., Lan, G.: J. Raman Spectrosc. 40, 1791 (2009) CrossRefGoogle Scholar
  43. 43.
    Saito, R., Dresselhaus, M., Dresselhaus, G.: Rysical Properties of Carbon Nanotubes. Imperial College Press, London (1998) CrossRefGoogle Scholar
  44. 44.
    Kim, R., Datta, S., Lundstrom, M.S.: J. Appl. Phys. 105, 034506 (2009) CrossRefGoogle Scholar
  45. 45.
    Ouyang, Y., Guo, J.: Appl. Phys. Lett. 94, 263107 (2009) CrossRefGoogle Scholar
  46. 46.
    Mohr, M., Maultzsch, J., Dobardzic, E., Reich, S., Milosevic, I., Damnjanovic, M., Bosak, A., Krisch, M., Thomsen, C.: Phys. Rev. B 76(3), 035439 (2007) CrossRefGoogle Scholar
  47. 47.
    Huang, Z., Fisher, T., Murthy, J.: J. Appl. Phys. 108(9), 094319 (2010) CrossRefGoogle Scholar
  48. 48.
    Xu, Y., Chen, X., Gu, B.L., Duan, W.: Appl. Phys. Lett. 95(23), 233116 (2009) CrossRefGoogle Scholar
  49. 49.
    Guo, Z., Zhang, D., Gong, X.G.: Appl. Phys. Lett. 95, 163103 (2009) CrossRefGoogle Scholar
  50. 50.
    Tan, Z., Wang, J.S., Gan, C.: Nano Lett. 11(1), 214 (2011) MathSciNetCrossRefGoogle Scholar
  51. 51.
    Savin, A., Kivshar, Y., Hu, B.: Phys. Rev. B 82, 195422 (2010) CrossRefGoogle Scholar
  52. 52.
    Jiang, J.W., Lan, J., Wang, J.S., Li, B.: J. Appl. Phys. 107(5), 054314 (2010) CrossRefGoogle Scholar
  53. 53.
    Zhang, W., Fisher, T., Mingo, N.: Numer. Heat Transf. Appl. 51(4), 333 (2007) CrossRefGoogle Scholar
  54. 54.
    Sancho, M., Sancho, J., Sancho, J., Rubio, J.: J. Phys. F, Met. Phys. 15, 851 (1985) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2011

Authors and Affiliations

  • Hossein Karamitaheri
    • 1
  • Neophytos Neophytou
    • 1
  • Mahdi Pourfath
    • 1
  • Hans Kosina
    • 1
  1. 1.Institute for MicroelectronicsTechnische Universität WienViennaAustria

Personalised recommendations