Device modeling in the Wigner picture

Computational aspects

Abstract

Basic computational aspects of the Wigner function approach for modeling and simulation of electronic transport are discussed, beginning with the coherent problem, followed by the dissipative problem including scattering events, which has been recently restated in terms of a scattering-induced Wigner function correction. These alternative formulations of the computational task are discussed along with a method for separation of the Wigner potential into classical (force) and quantum components.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Weyl, H.: Z. Phys. 46, 1 (1927)

    Article  Google Scholar 

  2. 2.

    Wigner, E.: Phys. Rev. 40, 749 (1932)

    MATH  Article  Google Scholar 

  3. 3.

    Moyal, J.E.: Proc. Camb. Philos. Soc. 45, 99 (1949)

    MATH  Article  MathSciNet  Google Scholar 

  4. 4.

    Tatarskii, V.I.: Sov. Phys. Usp. 26, 311 (1983)

    Article  MathSciNet  Google Scholar 

  5. 5.

    Dias, N.C., Prata, J.N.: Ann. Phys. 313, 110 (2004)

    MATH  Article  MathSciNet  Google Scholar 

  6. 6.

    Kluksdahl, N.C., Kriman, A.M., Ringhofer, C., Ferry, D.K.: Solid-State Electron. 31, 743 (1988)

    Article  Google Scholar 

  7. 7.

    Querlioz, D., Dollfus, P.: The Wigner Monte Carlo Method for Nanoelectronic Devices—A Particle Description of Quantum Transport and Decoherence. ISTE-Wiley, New York (2010)

    MATH  Google Scholar 

  8. 8.

    Frensley, W.: Phys. Rev. B 36(3), 1570 (1987)

    Article  Google Scholar 

  9. 9.

    Carruthers, P., Zachariasen, F.: Rev. Modern Phys. 55(1), 245 (1983)

    Article  MathSciNet  Google Scholar 

  10. 10.

    Frensley, W.: Rev. Modern Phys. 62(3), 745 (1990)

    Article  Google Scholar 

  11. 11.

    Biegel, B., Plummer, J.: Phys. Rev. B 54, 8070 (1996)

    Article  Google Scholar 

  12. 12.

    Gullapalli, K., Miller, D., Neikirk, D.: Phys. Rev. B 49, 2622 (1994)

    Article  Google Scholar 

  13. 13.

    Buot, F.A., Jensen, K.L.: Phys. Rev. B 42(15), 9429 (1990)

    Article  Google Scholar 

  14. 14.

    Mains, R.K., Haddad, G.I.: J. Appl. Phys. 64, 5041 (1988)

    Article  Google Scholar 

  15. 15.

    Querlioz, D., Nguyen, H.N., Saint-Martin, J., Bournel, A., Galdin-Retailleau, S., Dollfus, P.: J. Comput. Electron. 8, 324 (2009)

    Article  Google Scholar 

  16. 16.

    Nedjalkov, M.: In: D’Amico, A.P.A., Balestrino, G. (eds.): From Nanostructures to Nanosensing Applications. Proceedings of the International School of Physics ‘Enrico Fermi’, vol. 160, pp. 55–103. IOS Press, Amsterdam (2005)

    Google Scholar 

  17. 17.

    Svizhenko, A., Antram, M.P.: IEEE Trans. Electron Dev. 50, 1459 (2003)

    Article  Google Scholar 

  18. 18.

    Querlioz, D., Saint-Martin, J., Bournel, A., Dollfus, P.: Phys. Rev. B 78, 165306 (2008)

    Article  Google Scholar 

  19. 19.

    Kluksdahl, N.C., Kriman, A.M., Ferry, D.K., Ringhofer, C.: Phys. Rev. B 39, 7720 (1989)

    Article  Google Scholar 

  20. 20.

    Kim, K.Y., Lee, B.: Solid-State Electron. 43, 2243 (1999)

    Article  Google Scholar 

  21. 21.

    Yamada, Y., Tsuchiya, H., Ogawa, M.: IEEE Trans. Electron Dev. 56, 1396 (2009)

    Article  Google Scholar 

  22. 22.

    Barraud, S.: J. Appl. Phys. 106, 063714 (2009)

    Article  Google Scholar 

  23. 23.

    Shifren, L., Ferry, D.K.: J. Comput. Electron. 1, 55 (2002)

    Article  Google Scholar 

  24. 24.

    Querlioz, D., Dollfus, P., Do, V.N., Bournel, A., Nguyen, V.L.: J. Comput. Electron. 5, 443 (2006)

    Article  Google Scholar 

  25. 25.

    Nedjalkov, M., Kosina, H., Selberherr, S., Ringhofer, C., Ferry, D.: Phys. Rev. B 70(11), 115319 (2004)

    Article  Google Scholar 

  26. 26.

    Sverdlov, V., Gehring, A., Kosina, H., Selberherr, S.: Solid-State Electron. 49, 1510 (2005)

    Article  Google Scholar 

  27. 27.

    Querlioz, D., Saint-Martin, J., Do, V.N., Bournel, A., Dollfus, P.: IEEE Trans. Nanotechnol. 5, 737 (2006)

    Article  Google Scholar 

  28. 28.

    Querlioz, D., Saint-Martin, J., Do, V.N., Bournel, A., Dollfus, P.: In: Int. Electron Device Meeting Tech. Dig. (IEDM), pp. 941–944 (2006)

    Google Scholar 

  29. 29.

    Schwaha, P., Baumgartner, O., Heinzl, R., Nedjalkov, M., Selberherr, S., Dimov, I.: In: 13th International Workshop on Computational Electronics Book of Abstracts, IWCE-13, pp. 177–180. IEEE, Beijing (2009). ISBN:978-1-4244-3927-0

    Google Scholar 

  30. 30.

    Gehring, A., Kosina, H.: J. Comput. Electron. 4, 67 (2005)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Nedjalkov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nedjalkov, M., Kosina, H. & Schwaha, P. Device modeling in the Wigner picture. J Comput Electron 9, 218–223 (2010). https://doi.org/10.1007/s10825-010-0316-9

Download citation

Keywords

  • Wigner function
  • Boltzmann scattering
  • Carrier transport models