Skip to main content
Log in

GaAs X-ray detector characterization through a 3D finite element model

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this paper the characterization of a GaAs X-ray pixel detector is presented. The performance is obtained experimentally by a detector using a Schottky diode on a semi-insulating, Vertical Gradient Freeze, (100) oriented single crystal GaAs substrate. Moreover, a new 3D Model based on the Finite Element Method is shown which takes into account the carrier trapping and emission phenomena. The model analyzes the single event upset for a photon hitting the pixel surface in any direction. The main advantage of the model used is its ability to determine the influence of both the position of the impact point and of the slope of the particle trajectory with respect to the pixel surface on the detector performance. The numerical simulations obtained confirm the experimental values and permit the indirect evaluation of the charge collection efficiency through a preliminary determination of the real trap distribution and transport parameters depending on the electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.E. Fantacci, Proc. of 3rd International Workshop on Gallium Arsenide and Related Components, (University of Glasgow, Scotland, 1996), pp. 225–231.

    Google Scholar 

  2. W. Bencivelli, E. Bertolucci, U. Bottigli, A. Cola, M.E. Fantacci, P. Rizzo, V. Rosso, and A. Stefanini, Nuclear Instuments and Methods in Physics Research, A-346, 372–378 (1994).

    Article  Google Scholar 

  3. E. Vittone, C. Manfredotti, F. Fizzotti, K. Mirri, E. Gargioni, P. Polesello, A. Lo Giudice, S. Galassini, F. Nava, P. Vanni, and P. Rossi, Nuclear Instuments and Methods in Physics Research, B-158, 470–475 (1999).

    Article  Google Scholar 

  4. D.R. Dance, in “The Physics of Medical Imaging” edited by S. Webb, (IOP Publishing, Philadelphia, 1990), 35, p. 27.

    Google Scholar 

  5. E. Bertolucci, Proc. of 3rd International Workshop on Gallium Arsenide and Related Components(University of Glasgow, Scotland, 1996), pp. 211–216.

    Google Scholar 

  6. P. Randaccio, Nuclear Instuments and Methods in Physics Research, A-310, 210–214 (1991).

    Google Scholar 

  7. D.S. McGregor, and G.F. Knoll, Nuclear Instuments and Methods in Physics Research, A-322, 487–492 (1996).

    Google Scholar 

  8. G Bertuccio, R. Casiraghi, D. Maiocchi, A. Owens, M. Bavdaz, A. Peacock, H. Andersson, and S. Nenonen, IEEE Trans. on Nuclear Science, 50, 723–728 (2003).

    Article  Google Scholar 

  9. M. Rizzi, V. Antonicelli, and B. Castagnolo, IEE Proceedings on Circuits, Devices and Systems, 150, 210–216 (2003).

    Article  Google Scholar 

  10. T.E. Schlesinger and R.B. James, Semiconductors And Semimetals, Accademy Press Inc., 43, 3–7 (1995).

    Google Scholar 

  11. M. Campell, E.H. Heijne, G. Meddeler, E. Pernigotti, and W. Snoeys, IEEE Transactions on Nuclear Sciences, 45, 751 (1998).

    Article  Google Scholar 

  12. W. Hackbusch, Multi-grid Methods and Applications(Springer-Verlag, Berlin, 1985).

    Google Scholar 

  13. H.C. Elman et al., “A Multigrid method enhanced by Krylov subspace iteration for discrete Helmholtz equations”, SIAM J. Sci. Comp., 23, pp. 1291–1315, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  14. J. Nocedal, J. and S.J. Wright, Numerical Optimization, Springer Series in Operations Research(Springer Verlag, 1999).

  15. P. De Visschere, Solid State Electronics, 4, 455–459 (1990).

    Article  Google Scholar 

  16. H. Kim, H.S. MIN, W. Tang, and Y.J. Park, Solid State Electronics, 34, 1251–1253 (1991).

    Article  Google Scholar 

  17. D.S. McGregor and D.A. Rojeski, Journal of Applied Physics, 75, 7910 (1994).

    Article  Google Scholar 

  18. A. Cola, F. Quaranta, L. Vasanelli, C. Canali, A. Cavallini, F. Nava, and M.E. Fantacci, Nuclear Instruments and Methods in Physics Research, A390, 345–349 (1997).

    Google Scholar 

  19. A. Cola, F. Quaranta, M.A. Ciocci, and M.E. Fantacci, Nuclear Instruments and Methods, A380, 66–69 (1996).

    Google Scholar 

  20. S.P. Beaumont, F. Foster, G. Hughes, B.K. Jones, J. Santana I. J. Saunders, and T. Sloan, Nuclear Instruments and Methods in Physics Research, A322, 472–482 (1992).

    Google Scholar 

  21. B.L. Sharma, Metal-semiconductor Schottky barrier junction and their applications(Plenium Press, New York, 1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rizzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rizzi, M., Maurantonio, M. & Castagnolo, B. GaAs X-ray detector characterization through a 3D finite element model. J Comput Electron 5, 27–34 (2006). https://doi.org/10.1007/s10825-006-7916-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-006-7916-4

Keywords

Navigation