Skip to main content

Advertisement

Log in

2D Numerical Simulation of the MEP Energy-Transport Model with a Mixed Finite Elements Scheme

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A mixed finite element scheme is used to simulate a consistent energy-transport model for electron transport in semiconductor devices, free of any fitting parameters, formulated on the basis of the maximum entropy principle.

Simulations of silicon n+-n-n+ diodes, 2D-MESFET and 2D-MOSFET and comparisons with the results obtained with Monte Carlo direct simulation and with other energy-transport models, known in literature, show the validity of the model and the robustness of the numerical scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Schenk, Advanced Physical Models for Silicon Device Simulation (Springer, Wien, New York)

  2. A.M. Anile and V. Romano, “Non parabolic band transport in semiconductors: Closure of themoment equations,” Continuum Mech. Thermodyn. 11, 307 (1999) Springer-Verlag.

    Google Scholar 

  3. V. Romano, “Non parabolic band transport in semiconductors: Closure of theproduction terms in the moment equations,” Continuum Mech. Thermodyn. 12, 31 (2000) Springer-Verlag.

    Google Scholar 

  4. V. Romano, “Non-parabolic band hydrodynamical model for silicon semiconductorsand simulation of electron devices,” Math. Meth. Appl. Sci. 24, 439 (2001),John Wiley and Sons, Ltd.

  5. V. Romano, “2D simulation of a silicon MESFET witha nonparabolic hydrodynamical model based on the maximum entropyprinciple,” J. Comp. Phys. 176, 70 (2002).

    MATH  Google Scholar 

  6. P.A. Raviart and J.M. Thomas, “A mixed finite element method for 2nd orderelliptic problems,” In Mathematical Aspecys of Finite Elementmethods, edited by I. Galligani and E. Magenes, Lecture Notes 606 (Springer-Verlag, 1977), pp. 292.

  7. Marr A. Marrocco and Ph. Montarnal, “Simulation des modèles energy-transport à'aide des éléments finis mixtes,” C.R. Acad. Sci. Paris, 323, series I, 535, 1996.

  8. Ph. Montarnal, “Modèles de transport d'ènergie des semi-conducteurs,ètudes asymptotiques et rèsolution par èlèments finis mixtes,” Thèse de doctorat,Universitè Paris VI(Oct. 1997).

  9. N. Ben Abdallah, P. Degond, and S. Genieys, “Anenergy-transport model for semiconductors derived from the Boltzmannequation,” J. Stat. Phys., 84, 205 (1996).

    MathSciNet  Google Scholar 

  10. N. Ben Abdallah and P. Degond, “On a hierarchy ofmacroscopic models for semiconductors,” J. Math. Phys. 37, 3306 (1996).

    MathSciNet  Google Scholar 

  11. R. Stratton, “Diffusion of hot and cold electrons insemiconductor barriers,” Phys. Rev. 126, 2002 (1962).

    Article  Google Scholar 

  12. D. Chen, E.C. Kan, U. Ravaioli, C.-W. Shu, and R. Dutton,“An improved energy-transport model including nonparabolicity andnon-maxwelliandistribution effects,” IEEE on Electron Device Letters 13, 26 (1992).

    Google Scholar 

  13. E. Lyumkis, B. Polsky, A. Shir, and P. Visocky, “Transientsemiconductor device simulation including energy balance equation,” Compel 11, 311 (1992).

    Google Scholar 

  14. S. Selberherr, Analysis and Simulation of Semiconductor Devices (Wien, New York, Springer-Verlag, 1984).

    Google Scholar 

  15. K. Blotekjaer, “Transport equations forelectron in two-valley semiconductors,” IEEE Trans. on Electron Devices 17, 38 (1970).

    Google Scholar 

  16. G. Baccarani and M.R.Wordeman, “An investigation on steady-state velocity overshootin silicon,” Solid-state Electronics, 29, 970 (1982).

    Google Scholar 

  17. I. Müller and T. Ruggeri, Rational Extended Thermodynamics (Springer, New York, 1998).

    Google Scholar 

  18. D. Jou, J. Casas-Vazquez and G. Lebon, Extended Irreversible Thermodynamics, (Springer-Verlag, Berlin, 1993).

    Google Scholar 

  19. A.M. Anile, G. Mascali, and V. Romano, “Recent developments in hydrodynamical modelingof semiconductors,” in Mathematical Problems in Semiconductor Physics, 1, 54 (2003) Lecture Notes in Mathematics, Springer, (2003), vol. 1832.

  20. S.R. de Groot and P. Mazur, Non Equilibrium Thermodynamics (Dover Publications Inc., New York, 1985).

    Google Scholar 

  21. G. Mascali and V. Romano, “Si and Ga As mobility derived fromthe hydrodynamic model of semiconductors based on the maximum entropy principle,” Physica A 352, 459 (2005).

    Article  Google Scholar 

  22. Bre F. Brezzi and M. Fortin, “Mixed and Hybrid Finite Element Methods.Springer Series in Computational Mathematics 15,” Springer-Verlag, (1991).

  23. R. Glowinski and P. Le Tallec, Augmented Lagrangian and Operator Splitting Methods in Nonlinear Mechanics, (SIAM, Studies in Applied Mathematics, Philadelphia, 1989).

    Google Scholar 

  24. Ch. Faure and Y. Papegay. Odyssèe user's guide, version 1.7. Rap. Tech., R.T.0224., (Sept. 1998).

  25. GNU/Archimedes-website: http://www.gnu.org/software/archimedes

  26. J.W. Jerome and C.-W. Shu, “Energy models for one-carrier transportin semiconductor devices,” in Semiconductors Part II, The IMA Volumes in Mathematics and its Applications, edited by N.M. Coughran,J. Cole, P. Lloyd, J. K. White (1994), pp. 185.

  27. C. Jacoboni and L. Reggiani, “The Monte Carlo method forthe solution of charge transport in semiconductors withapplication to covalent materials,” Rev. Mod. Physics, 55, 645 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Anile.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anile, A.M., Marrocco, A., Romano, V. et al. 2D Numerical Simulation of the MEP Energy-Transport Model with a Mixed Finite Elements Scheme. J Comput Electron 4, 231–259 (2005). https://doi.org/10.1007/s10825-005-5039-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-005-5039-y

Keywords

Navigation