Journal of Computational Electronics

, Volume 3, Issue 3–4, pp 251–255 | Cite as

Silicon-Germanium Structure in Surrounding-Gate Strained Silicon Nanowire Field Effect Transistors

  • Yiming LiEmail author
  • Jam-Wem Lee
  • Hung-Mu Chou


In this paper we numerically examine the electrical characteristics of surrounding-gate strained silicon nanowire field effect transistors (FETs) by changing the radius (RSiGe) of silicon-germanium (SiGe) wire. Due to the higher electron mobility, the n-type FETs with strained silicon channel films do enhance driving capability (∼8% increment on the drain current) in comparison with the pure Si one. The leakage current and transfer characteristics, the threshold-voltage (V t ), the drain induced barrier height lowering (DIBL), and the gate capacitance (C G ) are estimated with respect to different gate length (L G ), gate bias (V G ), and RSiGe. For short channel effects, such as V t roll-off and DIBL, the surrounding-gate strained silicon nanowire FET sustains similar characteristics with the pure Si one.


strained silicon nanowire FET surrounding-gate drain induced barrier height lowering threshold-voltage roll-off gate capacitance simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B.H. Lee et al., “Performance enhancement on sub-70 nm strained silicon SOI MOSFETs on ultra-thin thermally mixed strained silicon/SiGe on insulator (TM-SGOI) substrate with raised S/D,” Tech. Dig. IEDM 946 (2002).Google Scholar
  2. 2.
    H.M. Nayfeh et al., “Influence of high channel doping on the inversion layer electron mobility in strained silicon n-MOSFETs,” IEEE Elec. Dev. Lett., 24, 248 (2003).CrossRefGoogle Scholar
  3. 3.
    J. Welser et al., “NMOS and PMOS transistors fabricated in strained silicon/relaxed silicon-germanium structures,” Tech. Dig. IEDM 1000 (1992).Google Scholar
  4. 4.
    M. Rashed et al., “Simulation of electron transport in strained silicon on relaxed Si1−xGex substrates,” in Proc. Biennial University/Government/Industry Microelec. Symp. (1995) vol. 168.Google Scholar
  5. 5.
    J.R. Hwang et al., “Performance of 70 nm strained-silicon CMOS devices,” Dig. Tech. 2003 Symp. VLSI Tech., 103 (2003).Google Scholar
  6. 6.
    L. Huang et al., “Electron and hole mobility enhancement in strained SOI by wafer bonding,” IEEE Trans. Elec. Dev., 49, 1566 (2002).CrossRefGoogle Scholar
  7. 7.
    C. Fenouillet-Beranger et al., “Requirements for ultra-thin-film devices and new materials for the CMOS roadmap,” Solid-State Elec., 48, 961 (2004).CrossRefGoogle Scholar
  8. 8.
    M. Enciso Aguilar et al., “Strained Si HFETs for microwave applications: State-of-the-art and further approaches,” Solid-State Elec., 48, 1443 (2004).CrossRefGoogle Scholar
  9. 9.
    F.-L. Yang et al., “Strained FIP-SOI (finFET/FD/PD-SOI) for sub-65 nm CMOS scaling,” in Dig. Tech. 2003 Symp. VLSI Tech. (2003) p. 137.Google Scholar
  10. 10.
    K. Rim et al., “Fabrication and analysis of deep submicron strained-Si n-MOSFET’s,” IEEE Trans. Elec. Dev., 47, 1406 (2000).CrossRefGoogle Scholar
  11. 11.
    F.-L. Yang et al., “25 nm CMOS Omega FETs,” Tech. Dig. IEDM, 255 (2002).Google Scholar
  12. 12.
    H. Wakabayashi et al., “Sub-10-nm planar-bulk-CMOS devices using lateral junction control,” Tech. Dig. IEDM S20P7 (2003).Google Scholar
  13. 13.
    S.N. Balaban et al., “Quantum transport in a cylindrical sub-0.1 μm silicon-based MOSFET,” Solid-State Elec., 46, 435 (2002).CrossRefGoogle Scholar
  14. 14.
    R. Venugopal et al., “Simulating quantum transport in nanoscale transistors: Real versus mode-space approaches,” J. App. Phys., 92, 3730 (2002).CrossRefGoogle Scholar
  15. 15.
    J. Wang et al., “Does source-to-drain tunneling limit the ultimate scaling of MOSFETs?,” Tech. Dig. IEDM, 707 (2002).Google Scholar
  16. 16.
    A. Svizhenko et al., “Role of scattering in nanotransistors,” IEEE Trans. Elec. Dev., 50, 1459 (2003).CrossRefGoogle Scholar
  17. 17.
    H. Kawaura et al., “Observation of source-to-drain direct tunneling current in 8 nm gate electrically variable shallow junction metal-oxide-semiconductor field-effect transistors,” Appl. Phys. Lett., 76, 3810 (2000).CrossRefGoogle Scholar
  18. 18.
    A. Schenk et al., “2D Analysis of source-to-drain tunneling in decananometer MOSFETs with the density-gradient model,” in Tech. Proc. Int. Conf. Modeling and Simulation of Microsystems 552 (2002).Google Scholar
  19. 19.
    A. Asenov et al., “The use of quantum potentials for confinement in semiconductor devices,” in Tech. Proc. Int. Conf. Modeling and Simulation of Microsystems 490 (2002).Google Scholar
  20. 20.
    Y. Li et al., “A Practical implementation of parallel dynamic load balancing for adaptive computing in VLSI device simulation,” Engineering with Computers, 18, 124 (2002).CrossRefGoogle Scholar
  21. 21.
    Y. Li et al., “A two-dimensional quantum transport simulation of nanoscale double-gate MOSFETs using parallel adaptive technique,” IEICE Trans. Information and Systems, E87-D, 1751 (2004).Google Scholar
  22. 22.
    T.-W. Tang et al., “Discretization scheme for the density-gradient equation and effect of boundary conditions,” J. Comput. Elec., 1, 389 (2002).CrossRefGoogle Scholar
  23. 23.
    C.-S. Tang et al., “Simulation of electrical characteristics of surrounding- and omega-shaped-gate nanowire FinFETs,” Proc. IEEE Conf. Nanotech. 281 (2004).Google Scholar
  24. 24.
    K. Matsuda, “Phonon scattering effects on temperature dependence of conductivity in strained silicon,” J. Comput. Elec., 1, 425 (2002).CrossRefGoogle Scholar
  25. 25.
    G. Kaiblinger-Grujin et al., “A universal low-field electron mobility model for semiconductor device simulation,” in Tech. Proc. Int. Conf. Modeling and Simulation of Microsystems 70 (1998).Google Scholar
  26. 26.
    A.R. Brown et al., “Intrinsic fluctuations in sub 10-nm double-gate MOSFETs introduced by discreteness of charge and matter,” IEEE Trans. Nanotech., 1, 195 (2002).CrossRefGoogle Scholar
  27. 27.
    A. Asenov et al., “Quantum mechanical and transport aspects of resolving discrete charges in nano-CMOS device simulation,” in Proc. IEEE Conf. Nanotech. 334 (2004).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2004

Authors and Affiliations

  1. 1.Department of Computational NanoelectronicsNano Device LaboratoriesHsinchuTaiwan
  2. 2.Microelectronics and Information Systems Research CenterNational Chiao Tung UniversityHsinchuTaiwan
  3. 3.Department of ElectrophysicsNational Chiao Tung UniversityHsinchuTaiwan

Personalised recommendations