Journal of Cultural Economics

, Volume 41, Issue 2, pp 129–154 | Cite as

On the role of cultural participation in tourism destination performance: an assessment using robust conditional efficiency approach

  • Calogero Guccio
  • Domenico LisiEmail author
  • Marco Martorana
  • Anna Mignosa
Original Article


The relationship between culture and tourism has been widely investigated from different perspectives. A large strand of literature studies the role of cultural heritage to attract tourists, while a rich bulk of studies on cultural participation investigates the impact of tourism flows on the demand for culture. Another aspect worth investigating relates to the link between cultural participation and the performance of tourism destinations (TDs), as a higher cultural participation in an area could boost the performance in the management of tourism resources. However, so far, this issue has been disregarded in the literature, and this paper aims at filling this gap. Specifically, it studies the effect of cultural participation on TDs’ performance using a conditional efficiency approach that ensures robust inference on the role of environmental factors. We employ data on the Italian regions for the period 2004–2010, and we explore the role of cultural participation for tourism by using several indicators. Our findings offer empirical support to the positive role of cultural participation and, thus, suggest that public cultural policies might also boost the efficiency of the tourism sector.


Tourism destination Cultural participation Efficiency Conditional FDH 

JEL Classification

Z11 L83 D21 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Alderighi, M., & Lorenzini, E. (2012). Cultural goods, cultivation of taste, satisfaction and increasing marginal utility during vacations. Journal of Cultural Economics, 36, 1–26.CrossRefGoogle Scholar
  2. Assaf, A. G., & Josiassen, A. (2012). Identifying and ranking the determinants of tourism performance: A global investigation. Journal of Travel Research, 51(4), 388–399.CrossRefGoogle Scholar
  3. Assaf, A. G., & Tsionas, E. G. (2015). Incorporating destination quality into the measurement of tourism performance: A Bayesian approach. Tourism Management, 49, 58–71.CrossRefGoogle Scholar
  4. Ateca-Amestoy, V. (2008). Determining heterogeneous behavior for theatre attendance. Journal of Cultural Economics, 32, 127–151.CrossRefGoogle Scholar
  5. Ateca-Amestoy, V., & Prieto-Rodriguez, J. (2013). Forecasting accuracy of behavioural models for participation in the arts. European Journal of Operational Research, 229, 124–131.CrossRefGoogle Scholar
  6. Badin, L., Daraio, C., & Simar, L. (2010). Optimal bandwidth selection for conditional efficiency measures: A data-driven approach. European Journal of Operational Research, 201(2), 633–640.CrossRefGoogle Scholar
  7. Barros, C. P., Botti, L., Peypoch, N., Robinot, E., Solonandrasana, B., & Assaf, A. G. (2011). Performance of French destinations: Tourism attraction perspectives. Tourism Management, 32, 141–146.CrossRefGoogle Scholar
  8. Benito, B., Solana, J., & Lopez, P. (2014). Determinants of Spanish regions’ tourism performance: A two-stage, double-bootstrap data envelopment analysis. Tourism Economics, 20(5), 987–1012.CrossRefGoogle Scholar
  9. Bonet, L. (2003). Cultural Tourism. In R. Towse (Ed.), A handbook of cultural economics (pp. 187–193). Northampton: Edward Elgar.Google Scholar
  10. Borowiecki, K. J., & Castiglione, C. (2014). Cultural participation and tourism flows: An empirical investigation of Italian provinces. Tourism Economics, 20(2), 241–262.CrossRefGoogle Scholar
  11. Bosetti, V., Cassinelli, M., & Lanza, A. (2007). Benchmarking in tourism destinations: Keeping in mind the sustainable paradigm. In A. Matias, P. Nijkamp, & P. Neto (Eds.), Advances in modern tourism research (pp. 165–180). Heidelberg, New York: Physica-Verlag.Google Scholar
  12. Botti, L., Peypoch, N., Robinot, E., & Solonadrasana, B. (2009). Tourism destination competitiveness: The French regions case. European Journal of Tourism Research, 2(1), 5–24.Google Scholar
  13. Bourdieu, P. (1984). Distinction: A social critique of the judgment of taste. London: Routledge.Google Scholar
  14. Brida, J. G., Dalle Nogare, C., & Scuderi, R. (2016). Frequency of museum attendance: Motivation matters. Journal of Cultural Economics, 40(3), 261–283.CrossRefGoogle Scholar
  15. Caserta, S., & Russo, A. P. (2002). More means worse: Asymmetric information, spatial displacement and sustainable heritage tourism. Journal of Cultural Economics, 26(4), 245–260.CrossRefGoogle Scholar
  16. Cazals, C., Florens, J. P., & Simar, L. (2002). Nonparametric frontier estimation: A robust approach. Journal of Econometrics, 106, 1–25.CrossRefGoogle Scholar
  17. Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2, 429–444.CrossRefGoogle Scholar
  18. Cordero, J. M., Alonso-Moran, E., Nuno-Solinis, R., Orueta, J. F., & Arce, R. S. (2015). Efficiency assessment of primary care providers: A conditional nonparametric approach. European Journal of Operational Research, 240, 235–244.CrossRefGoogle Scholar
  19. Cracolici, M. F., Nijkamp, P., & Cuffaro, M. (2007). Efficiency and productivity of Italian tourist destinations: A quantitative estimation based on data envelopment analysis and the Malmquist method. In A. Matias, P. Nijkamp, & P. Neto (Eds.), Advances in modern tourism research (pp. 325–343). Heidelberg, New York: Physica-Verlag.Google Scholar
  20. Cracolici, M. F., Nijkamp, P., & Rietveld, P. (2008). Assessment of tourism competitiveness by analysing destination efficiency. Tourism Economics, 14, 325–342.CrossRefGoogle Scholar
  21. Cuccia, T., & Cellini, R. (2007). Is cultural heritage really important for tourists? A contingent rating study. Applied Economics, 39(2), 261–271.CrossRefGoogle Scholar
  22. Cuccia, T., Guccio, C., & Rizzo, I. (2016). The effects of UNESCO World Heritage list inscription on tourism destinations performance in Italian regions. Economic Modelling, 53, 494–508.CrossRefGoogle Scholar
  23. Cuccia, T., Guccio, C., & Rizzo, I. (2017). UNESCO sites and performance trend of Italian regional tourism destinations: A two-stage DEA window analysis with spatial interaction. Tourism Economics. doi: 10.1177/1354816616656266.Google Scholar
  24. Cuccia, T., & Rizzo, I. (2013). Seasonal tourism flows in UNESCO sites: The case of Sicily. In J. Kaminsky, A. M. Benson, & D. Arnold (Eds.), Contemporary issues in cultural heritage tourism (pp. 179–199). London: Routledge.Google Scholar
  25. Daouia, A., Florens, J. P., & Simar, L. (2012). Regularization of nonparametric frontier estimators. Journal of Econometrics, 168(2), 285–299.CrossRefGoogle Scholar
  26. Daouia, A., & Simar, L. (2007). Non-parametric efficiency analysis: A multivariate conditional quantile approach. Journal of Econometrics, 140, 375–400.CrossRefGoogle Scholar
  27. Daraio, C., & Simar, L. (2005). Introducing environmental variables in nonparametric frontier models: A probabilistic approach. Journal of Productivity Analysis, 24, 93–121.CrossRefGoogle Scholar
  28. Daraio, C., & Simar, L. (2007a). Conditional nonparametric frontier models for convex and nonconvex technologies: A unifying approach. Journal of Productivity Analysis, 28, 13–32.CrossRefGoogle Scholar
  29. Daraio, C., & Simar, L. (2007b). Advanced robust and nonparametric methods in efficiency analysis—Methodology and applications. New York: Springer Science.Google Scholar
  30. De Cantis, S., Ferrante, M., & Vaccina, F. (2011). Seasonal pattern and amplitude–a logical framework to analyse seasonality in tourism: An application to bed occupancy in Sicilian hotels. Tourism Economics, 17(3), 655–675.CrossRefGoogle Scholar
  31. De Witte, K., & Kortelainen, M. (2013). What explains performance of students in a heterogeneous environment? Conditional efficiency estimation with continuous and discrete environmental variables. Applied Economics, 45(17), 2401–2412.CrossRefGoogle Scholar
  32. Debreu, G. (1951). The coefficient of resource utilization. Econometrica, 19, 273–292.CrossRefGoogle Scholar
  33. Deprins, D., Simar, L., & Tulkens, H. (1984). Measuring labor efficiency in post offices. In M. Marchand, P. Pestieau, & H. Tulkens (Eds.), The performance of public enterprises: Concepts and measurement (pp. 243–267). Amsterdam, NH: Elsevier.Google Scholar
  34. Di Lascio, F. M. L., Giannerini, S., Scorcu, A. E., & Candela, G. (2011). Cultural tourism and temporary art exhibitions in Italy: A panel data analysis. Statistical Methods and Applications, 20, 519–542.CrossRefGoogle Scholar
  35. Dwyer, L., & Kim, C. (2003). Destination competitiveness: Determinants and indicators. Current Issues in Tourism, 6(5), 369–414.CrossRefGoogle Scholar
  36. Eurostat. (2016). Culture statistics 2016 edition. Luxemburgo.Google Scholar
  37. Falk, M., & Katz-Gerro, T. (2016). Cultural participation in Europe: Can we identify common determinants? Journal of Cultural Economics, 40, 127–162.CrossRefGoogle Scholar
  38. Farrell, M. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society, 120, 253–290.CrossRefGoogle Scholar
  39. Federculture. (2015). Cultura, identita’ e innovazione la sfida per il futuro—11° rapporto annuale Federculture 2015. 24 Ore Cultura, Milano.Google Scholar
  40. Fondazione Symbola—Unioncamere. (2014). Io sono CulturaRapporto 2014, Quaderni di Symbola.Google Scholar
  41. Fuchs, M. (2004). Strategy development in tourism destinations: A DEA approach. Poznam University Economic Review, 4(1), 52–73.Google Scholar
  42. Gapinski, J. (1988). Tourism contribution to the demand for London’s lively arts. Applied Economics, 20, 957–968.CrossRefGoogle Scholar
  43. Guccio, C., Lisi, D., Mignosa, A., & Rizzo, R. (2016). Has cultural heritage monetary value an impact on visits? An assessment using Italian official data. Paper presented at the Biannual Conference of the Association of Cultural Economics International, Valladolid.Google Scholar
  44. Kneip, A., Park, B., & Simar, L. (1998). A note on the convergence of nonparametric DEA efficiency measures. Econometric Theory, 14, 783–793.CrossRefGoogle Scholar
  45. Koopmans, T. C. (1951). An analysis of production as an efficient combination of activities. In T. C. Koopmans (Ed.), Activity analysis of production and allocation, Cowles Commission for Research in Economics (pp. 33–37). New York: Wiley.Google Scholar
  46. Mastromarco, C., & Simar, L. (2015). Effect of FDI and time on catching up: New insights from a conditional nonparametric frontier analysis. Journal of Applied Econometrics, 30(5), 826–847.CrossRefGoogle Scholar
  47. Nicolau, J. L. (2010). Culture-sensitive tourists are more price insensitive. Journal of Cultural Economics, 34, 181–195.CrossRefGoogle Scholar
  48. Peypoch, N., & Solonandrasana, B. (2007). On E-attraction tourism destination: Extension and application. In A. Matias, P. Nijkamp, & P. Neto (Eds.), Advances in modern tourism research (pp. 293–306). Heidelberg, New York: Physica-Verlag.Google Scholar
  49. Prieto-Rodriguez, J., & Gonzalez-Díaz, M. (2008). Is there an economic rent for island hotels? Tourism economics, 14(1), 131–154.CrossRefGoogle Scholar
  50. Richards, G. (1996). Production and consumption of European cultural tourism. Annals of Tourism Research, 23(2), 261–283.CrossRefGoogle Scholar
  51. Simar, L., & Wilson, P. (2007). Estimation and inference in two-stage, semi-parametric models of production processes. Journal of Econometrics, 136, 31–64.CrossRefGoogle Scholar
  52. Simar, L., & Wilson, P. (2008). Statistical inference in nonparametric frontier models: Recent developments and perspectives. In H. O. Fried, C. A. Knox Lovell, & S. S. Schmidt (Eds.), The measurement of productive efficiency and productivity growth (pp. 421–521). New York: Oxford University Press.Google Scholar
  53. Simar, L., & Wilson, P. (2011). Two stage DEA: Caveat emptor. Journal of Productivity Analysis, 36, 205–218.CrossRefGoogle Scholar
  54. Simar, L., & Wilson, P. (2013). Estimation and inference in nonparametric frontier models: Recent developments and perspectives. Foundations and Trends in Econometrics, 5(3–4), 183–337.Google Scholar
  55. Simar, L., & Wilson, P. (2015). Statistical approaches for nonparametric frontier models: A guided tour. International Statistical Review, 83(1), 77–110.CrossRefGoogle Scholar
  56. Tsionas, E. G., & Assaf, A. G. (2014). Short-run and long-run performance of international tourism: Evidence from Bayesian dynamic models. Tourism Management, 42, 22–36.CrossRefGoogle Scholar
  57. UNESCO. (2009). Measuring cultural participation. 2009 FRAMEWORK FOR CULTURAL STATISTICS HANDBOOK NO. 2.
  58. UNWTO. (2015). Tourism highlightsEdition 2015.
  59. UNWTO. (2016). UNWTO/UNESCO world conference on tourism and culture: Building a new partnership Siem Reap, Cambodia, 46 February 2015.
  60. World Economic Forum. (2015). The travel and tourism competitiveness report 2015, Geneva.Google Scholar
  61. Zieba, M. (2016). Tourism flows and the demand for regional and city theatres in Austria. Journal of Cultural Economics, 40, 191–221.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Calogero Guccio
    • 1
  • Domenico Lisi
    • 1
    Email author
  • Marco Martorana
    • 1
  • Anna Mignosa
    • 1
    • 2
  1. 1.Department of Economics and BusinessUniversity of CataniaCataniaItaly
  2. 2.Erasmus School of History, Culture and CommunicationRotterdamThe Netherlands

Personalised recommendations