Abstract
When designing peptide ligands based on the structure of a protein receptor, it can be very useful to narrow down the possible binding positions and bound conformations of the ligand without the need to choose its amino acid sequence in advance. Here, we construct and benchmark a tool for this purpose based on a recently reported statistical energy model named SCUBA (Sidechain-Unknown Backbone Arrangement) for designing protein backbones without considering specific amino acid sequences. With this tool, backbone fragments of different local conformation types are generated and optimized with SCUBA-driven stochastic simulations and simulated annealing, and then ranked and clustered to obtain representative backbone fragment poses of strong SCUBA interaction energies with the receptor. We computationally benchmarked the tool on 111 known protein-peptide complex structures. When the bound ligands are in the strand conformation, the method is able to generate backbone fragments of both low SCUBA energies and low root mean square deviations from experimental structures of peptide ligands. When the bound ligands are helices or coils, low-energy backbone fragments with binding poses similar to experimental structures have been generated for approximately 50% of benchmark cases. We have examined a number of predicted ligand-receptor complexes by atomistic molecular dynamics simulations, in which the peptide ligands have been found to stay at the predicted binding sites and to maintain their local conformations. These results suggest that promising backbone structures of peptides bound to protein receptors can be designed by identifying outstanding minima on the SCUBA-modeled backbone energy landscape.
Similar content being viewed by others
Data availability
Not applicable.
Code availability
The computer program with examples can be downloaded from https://doi.org/10.5281/zenodo.7839258.
References
Kulshreshtha S, Chaudhary V, Goswami GK, Mathur N (2016) J Comput Aided Mol Des 30(5):401
Henninot A, Collins JC, Nuss JM (2018) J Med Chem 61(4):1382
Beltrán J, Steiner PJ, Bedewitz M, Wei S, Peterson FC, Li Z, Hughes BE, Hartley Z, Robertson NR, Medina-Cucurella AV (2022) Nat Biotechnol 40(12):1855
Shui S, Gainza P, Scheller L, Yang C, Kurumida Y, Rosset S, Georgeon S, Di Roberto RB, Castellanos-Rueda R, Reddy ST (2021) Nat Commun 12(1):5754
Shivange AV, Marienhagen J, Mundhada H, Schenk A, Schwaneberg U (2009) Curr Opin Chem Biol 13(1):19
Pelay-Gimeno M, Glas A, Koch O, Grossmann TN (2015) Angew Chem Int Ed 54(31):8896
Lee AC-L, Harris JL, Khanna KK, Hong J-H (2019) Int J Mol Sci 20(10):2383
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A (2021) Nature 596(7873):583
Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR, Wang J, Cong Q, Kinch LN, Schaeffer RD (2021) Science 373(6557):871
Conte LL, Chothia C, Janin J (1999) J Mol Biol 285(5):2177
Cao L, Coventry B, Goreshnik I, Huang B, Sheffler W, Park JS, Jude KM, Marković I, Kadam RU, Verschueren KH (2022) Nature 605(7910):551
Cao L, Goreshnik I, Coventry B, Case JB, Miller L, Kozodoy L, Chen RE, Carter L, Walls AC, Park Y-J (2020) Science 370(6515):426
Dou J, Vorobieva AA, Sheffler W, Doyle LA, Park H, Bick MJ, Mao B, Foight GW, Lee MY, Gagnon LA (2018) Nature 561(7724):485
Dang LT, Miao Y, Ha A, Yuki K, Park K, Janda CY, Jude KM, Mohan K, Ha N, Vallon M (2019) Nat Struct Mol Biol 26(6):407
Raveh B, London N, Zimmerman L, Schueler-Furman O (2011) PLoS ONE 6(4):e18934
Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) Nucleic Acids Research 33(suppl_2):W363
Raveh B, London N, Schueler-Furman O (2010) Proteins 78(9):2029
Desta IT, Porter KA, Xia B, Kozakov D, Vajda S (2020) Structure 28(9):1071
Karplus M, McCammon JA (2002) Nat Struct Biol 9(9):646
Van Gunsteren WF, Bakowies D, Baron R, Chandrasekhar I, Christen M, Daura X, Gee P, Geerke DP, Glättli A, Hünenberger PH (2006) Angew Chem Int Ed 45(25):4064
Shaw DE, Maragakis P, Lindorff-Larsen K, Piana S, Dror RO, Eastwood MP, Bank JA, Jumper JM, Salmon JK, Shan Y (2010) Science 330(6002):341
Huang B, Xu Y, Hu X, Liu Y, Liao S, Zhang J, Huang C, Hong J, Chen Q, Liu H (2022) Nature 602(7897):523
Balasco N, Esposito L, De Simone A, Vitagliano L (2022) Biomolecules 12(9):1184
Skolnick J, Gao M (2021) Curr Opin Struct Biol 68:1
Alford RF, Leaver-Fay A, Jeliazkov JR, O’Meara MJ, DiMaio FP, Park H, Shapovalov MV, Renfrew PD, Mulligan VK, Kappel K (2017) J Chem Theory Comput 13(6):3031
Xiong P, Wang M, Zhou X, Zhang T, Zhang J, Chen Q, Liu H (2014) Nat Commun 5(1):5330
Liu Y, Zhang L, Wang W, Zhu M, Wang C, Li F, Zhang J, Li H, Chen Q, Liu H (2022) Na Comput Sci 2(7):451
Dauparas J, Anishchenko I, Bennett N, Bai H, Ragotte RJ, Milles LF, Wicky BI, Courbet A, de Haas RJ, Bethel N (2022) Science 378(6615):49
Xiong P, Hu X, Huang B, Zhang J, Chen Q, Liu H (2020) Bioinformatics 36(1):136
Martins PM, Santos LH, Mariano D, Queiroz FC, Bastos LL, Gomes IdS, Fischer PH, Rocha RE, Silveira SA, de Lima LH (2021) BMC Bioinformatics 22(1):1
Joosten RP, Te Beek TA, Krieger E, Hekkelman ML, Hooft RW, Schneider R, Sander C, Vriend G (2010) Nucleic Acids Res 39(suppl_1):D411
Kabsch W, Sander C (1983) Biopolymers 22(12):2577
Case DA, Aktulga HM, Belfon K, Ben-Shalom IY, Berryman JT, Brozell SR, Cerutti DS, Cheatham TE III, Cisneros GA, Cruzeiro VWD, Darden TA, Forouzesh N, Giambaşu G, Giese T, Gilson MK, Gohlke H, Goetz AW, Harris J, Izadi S, Izmailov SA, Kasavajhala K, Kaymak MC, King E, Kovalenko A, Kurtzman T, Lee TS, Li P, Lin C, Liu J, Luchko T, Luo R, Machado M, Man V, Manathunga M, Merz KM, Miao Y, Mikhailovskii O, Monard G, Nguyen H, O’Hearn KA, Onufriev A, Pan F, Pantano S, Qi R, Rahnamoun A, Roe DR, Roitberg A, Sagui C, Schott-Verdugo S, Shajan A, Shen J, Simmerling CL, Skrynnikov NR, Smith J, Swails J, Walker RC, Wang J, Wang J, Wei H, Wu X, Wu Y, Xiong Y, Xue Y, York DM, Zhao S, Zhu Q, Kollman PA (2023) Amber 2023. University of California, San Francisco
Tian C, Kasavajhala K, Belfon KAA, Raguette L, Huang H, Migues AN, Bickel J, Wang Y, Pincay J, Wu Q, Simmerling C (2020) J Chem Theory Comput 16(1):528–552
Izadi S, Anandakrishnan R, Onufriev AV (2014) J Phys Chem Lett 5(21):3863–3871
Uberuaga BP, Anghel M, Voter AF (2004) J Chem Phys 120(14):6363–6374
Sindhikara DJ, Kim S, Voter AF, Roitberg AE (2009) J Chem Theory Comput 5(6):1624–1631
Bussi G, Zykova-Timan T, Parrinello M (2009) J Chem Phys 130(7):074101
Ryckaert JP, Ciccotti G, Berendsen HJC (1977) J Comput Phys 23(3):327–341
Miyamoto S, Kollman PA (1992) J Comput Chem 13(8):952–962
Walker RC, Crowley MF, Case DA (2008) J Comput Chem 29(7):1019–1031
Nam K, Gao J, York DM (2005) J Chem Theory Comput 1(1):2–13
Roe DR, Cheatham TE 3rd (2013) J Chem Theory Comput 9(7):3084–3095
Atkinson RA, Joseph C, Kelly G, Muskett FW, Frenkiel TA, Nietlispach D, Pastore A (2001) Nat Struct Biol 8(10):853
Remaut H, Rose RJ, Hannan TJ, Hultgren SJ, Radford SE, Ashcroft AE, Waksman G (2006) Mol Cell 22(6):831
Becker A, Schlichting I, Kabsch W, Groche D, Schultz S, Wagner A (1998) Nat Struct Biol 5(12):1053
Prag G, Misra S, Jones EA, Ghirlando R, Davies BA, Horazdovsky BF, Hurley JH (2003) Cell 113(5):609
Piserchio A, Fellows A, Madden DR, Mierke DF (2005) Biochemistry 44(49):16158
Huang X, Poy F, Zhang R, Joachimiak A, Sudol M, Eck MJ (2000) Nat Struct Biol 7(8):634
Timmons PB, Hewage CM (2021) Briefings Bioinformatics 22(6):bbab308
Johansson-Åkhe I, Mirabello C, Wallner B (2019) Sci Rep 9(1):4267
de Vries SJ, Rey J, Schindler CE, Zacharias M, Tuffery P (2017) Nucleic Acids Res 45(W1):W361
Trellet M, Melquiond AS, Bonvin AM (2013) PLoS ONE 8(3):e58769
Zhang Y, Sanner MF (2019) Bioinformatics 35(24):5121
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant number 22177107 to H.L.).
Funding
Not applicable.
Author information
Authors and Affiliations
Contributions
L Zhang designed and completed the computational study under the supervision of HY Liu. L Zhang and HY Liu wrote the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Ethical approval
Not applicable.
Consent to participate
Not applicable.
Consent for publication
Not applicable.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhang, L., Liu, H. Exploring binding positions and backbone conformations of peptide ligands of proteins with a backbone-centred statistical energy function. J Comput Aided Mol Des 37, 463–478 (2023). https://doi.org/10.1007/s10822-023-00518-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10822-023-00518-0