Skip to main content
Log in

Inhibition mechanism of MRTX1133 on KRASG12D: a molecular dynamics simulation and Markov state model study

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The mutant KRAS was considered as an “undruggable” target for decades, especially KRASG12D. It is a great challenge to develop the inhibitors for KRASG12D which lacks the thiol group for covalently binding ligands. The discovery of MRTX1133 solved the dilemma. Interestingly, MRTX1133 can bind to both the inactive and active states of KRASG12D. The binding mechanism of MRTX1133 with KRASG12D, especially how MRTX1133 could bind the active state KRASG12D without triggering the active function of KRASG12D, has not been fully understood. Here, we used a combination of all-atom molecular dynamics simulations and Markov state model (MSM) to understand the inhibition mechanism of MRTX1133 and its analogs. The stationary probabilities derived from MSM show that MRTX1133 and its analogs can stabilize the inactive or active states of KRASG12D into different conformations. More remarkably, by scrutinizing the conformational differences, MRTX1133 and its analogs were hydrogen bonded to Gly60 to stabilize the switch II region and left switch I region in a dynamically inactive conformation, thus achieving an inhibitory effect. Our simulation and analysis provide detailed inhibition mechanism of KRASG12D induced by MRTX1133 and its analogs. This study will provide guidance for future design of novel small molecule inhibitors of KRASG12D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data are freely available upon request of the corresponding author.

Abbreviations

KRAS:

Kirsten rat sarcoma virus oncogene

GDP:

Guanosine diphosphate

GTP:

Guanosine triphosphate

GppNHp:

Guanosine 5′-(β-γ-imido) triphosphate

RMSD:

Root mean squared deviation

MD:

Molecular dynamics

TIP3P:

Transferable interatomic potential with three points

MSM:

Markov state model

References

  1. Bos JL (1989) Ras oncogenes in human cancer: a review. Can Res 49(17):4682–4689

    CAS  Google Scholar 

  2. Simanshu DK, Nissley DV, McCormick F (2017) RAS proteins and their regulators in human disease. Cell 170(1):17–33. https://doi.org/10.1016/j.cell.2017.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mo SP, Coulson JM, Prior IA (2018) RAS variant signalling. Biochem Soc Trans 46(5):1325. https://doi.org/10.1042/BST20180173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pantsar T (2020) The current understanding of KRAS protein structure and dynamics. Comput Struct Biotechnol J 18:189–198. https://doi.org/10.1016/j.csbj.2019.12.004

    Article  CAS  PubMed  Google Scholar 

  5. Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in cancer. Can Res 72(10):2457–2467. https://doi.org/10.1158/0008-5472.CAN-11-2612

    Article  CAS  Google Scholar 

  6. Bourne HR, Sanders DA, McCormick F (1991) The GTPase superfamily: conserved structure and molecular mechanism. Nature 349(6305):117–127. https://doi.org/10.1038/349117a0

    Article  CAS  PubMed  Google Scholar 

  7. Wittinghofer A, Scheffzek K, Ahmadian MR (1997) The interaction of Ras with GTPase-activating proteins. FEBS Lett 410(1):63–67. https://doi.org/10.1016/S0014-5793(97)00321-9

    Article  CAS  PubMed  Google Scholar 

  8. Gideon P, John J, Frech M et al (1992) Mutational and kinetic analyses of the GTPase-activating protein (GAP)-p21 interaction: the C-terminal domain of GAP is not sufficient for full activity. Mol Cell Biol 12(5):2050–2056. https://doi.org/10.1128/mcb.12.5.2050-2056.1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Eccleston JF, Moore K, Morgan L et al (1993) Kinetics of interaction between normal and proline 12 Ras and the GTPase-activating proteins, p120-GAP and neurofibromin: the significance of the intrinsic GTPase rate in determining the transforming ability of ras. J Biol Chem 268(36):27012–27019. https://doi.org/10.1016/S0021-9258(19)74211-2

    Article  CAS  PubMed  Google Scholar 

  10. Vetter IR, Wittinghofer A (2001) The guanine nucleotide-binding switch in three dimensions. Science 294(5545):1299–1304. https://doi.org/10.1126/science.1062023

    Article  CAS  PubMed  Google Scholar 

  11. Pacold ME, Suire S, Perisic O et al (2000) Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase γ. Cell 103(6):931–944. https://doi.org/10.1016/S0092-8674(00)00196-3

    Article  CAS  PubMed  Google Scholar 

  12. Nassar N, Horn G, Herrmann CA et al (1995) The 2.2 Å crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with RaplA and a GTP analogue. Nature 375(6532):554–560. https://doi.org/10.1038/375554a0

    Article  CAS  PubMed  Google Scholar 

  13. Tuttle RL, Gill NS, Pugh W et al (2001) Regulation of pancreatic β-cell growth and survival by the serine/threonine protein kinase Akt1/PKBα. Nat Med 7(10):1133–1137. https://doi.org/10.1038/nm1001-1133

    Article  CAS  PubMed  Google Scholar 

  14. Drosten M, Dhawahir A, Sum EY et al (2010) Genetic analysis of Ras signalling pathways in cell proliferation, migration and survival. EMBO J 29(6):1091–1104. https://doi.org/10.1038/emboj.2010.7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Crespo P, Leon J (2000) Ras proteins in the control of the cell cycle and cell differentiation. Cell Mol Life Sci CMLS 57(11):1613–1636. https://doi.org/10.1007/PL00000645

    Article  CAS  PubMed  Google Scholar 

  16. Marshall C (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80(2):179–185. https://doi.org/10.1016/0092-8674(95)90401-8

    Article  CAS  PubMed  Google Scholar 

  17. Cully M, You H, Levine AJ, Mak TW (2006) Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 6(3):184–192. https://doi.org/10.1038/nrc1819

    Article  CAS  PubMed  Google Scholar 

  18. Kessler D, Gmachl M, Mantoulidis A et al (2019) Drugging an undruggable pocket on KRAS. Proc Natl Acad Sci 116(32):15823–15829. https://doi.org/10.1073/pnas.1904529116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhu K, Li C, Wu KY et al (2022) Modeling receptor flexibility in the structure-based design of KRASG12C inhibitors. J Comput Aided Mol Des 36(8):591–604. https://doi.org/10.1007/s10822-022-00467-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Canon J, Rex K, Saiki AY et al (2019) The clinical KRAS (G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature 575(7781):217–223. https://doi.org/10.1038/s41586-019-1694-1

    Article  CAS  PubMed  Google Scholar 

  21. Nakajima EC, Drezner N, Li X et al (2022) FDA approval summary: sotorasib for KRAS G12C-mutated metastatic NSCLC. Clin Cancer Res 28(8):1482–1486. https://doi.org/10.1158/1078-0432.CCR-21-3074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fell JB, Fischer JP, Baer BR et al (2020) Identification of the clinical development candidate MRTX849, a covalent KRASG12C inhibitor for the treatment of cancer. J Med Chem 63(13):6679–6693. https://doi.org/10.1021/acs.jmedchem.9b02052

    Article  CAS  PubMed  Google Scholar 

  23. Hallin J, Engstrom LD, Hargis L et al (2020) The KRASG12C inhibitor MRTX849 provides insight toward therapeutic susceptibility of KRAS-mutant cancers in mouse models and patients therapeutic insight from the KRASG12C inhibitor MRTX849. Cancer Discov 10(1):54–71. https://doi.org/10.1158/2159-8290.CD-19-1167

    Article  CAS  PubMed  Google Scholar 

  24. Prior IA, Hood FE, Hartley JL (2020) The frequency of ras mutations in cancer ras cancer statistics. Can Res 80(14):2969–2974. https://doi.org/10.1158/0008-5472.CAN-19-3682

    Article  CAS  Google Scholar 

  25. Eser S, Schnieke A, Schneider G, Saur D (2014) Oncogenic KRAS signalling in pancreatic cancer. Br J Cancer 111(5):817–822. https://doi.org/10.1158/10.1038/bjc.2014.215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stephen AG, Esposito D, Bagni RK, McCormick F (2014) Dragging ras back in the ring. Cancer Cell 25(3):272–281. https://doi.org/10.1016/j.ccr.2014.02.017

    Article  CAS  PubMed  Google Scholar 

  27. McCormick F (2015) KRAS as a therapeutic target. Clin Cancer Res 21(8):1797–1801. https://doi.org/10.1158/1078-0432.CCR-14-2662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang X, Allen S, Blake JF et al (2021) Identification of MRTX1133, a noncovalent, potent, and selective KRASG12D inhibitor. J Med Chem 65(4):3123–3133. https://doi.org/10.1021/acs.jmedchem.1c01688

    Article  CAS  PubMed  Google Scholar 

  29. Hallin J, Bowcut V, Calinisan A et al (2022) Anti-tumor efficacy of a potent and selective non-covalent KRASG12D inhibitor. Nat Med 10:2171–2182. https://doi.org/10.1038/s41591-022-02007-7

    Article  CAS  Google Scholar 

  30. Issahaku AR, Mukelabai N, Agoni C et al (2022) Characterization of the binding of MRTX1133 as an avenue for the discovery of potential KRASG12D inhibitors for cancer therapy. Sci Rep 12(1):17796. https://doi.org/10.1038/s41598-022-22668-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vasta JD, Peacock DM, Zheng Q et al (2022) KRAS is vulnerable to reversible switch-II pocket engagement in cells. Nat Chem Biol 18(6):596–604. https://doi.org/10.1038/s41589-022-00985-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zheng Q, Peacock DM, Shokat KM (2022) Drugging the next undruggable KRAS allele-Gly12Asp. J Med Chem 65(4):3119–3122. https://doi.org/10.1021/acs.jmedchem.2c00099

    Article  CAS  PubMed  Google Scholar 

  33. Hallin J, Bowcut V, Calinisan A et al (2022) Anti-tumor efficacy of a potent and selective non-covalent KRASG12D inhibitor. Nat Med 28(10):2171–2182. https://doi.org/10.1038/s41591-022-02007-7

    Article  CAS  PubMed  Google Scholar 

  34. Mccammon JA, Gelin BR, Karplus M (1977) Dynamics of folded proteins. Nature 267(5612):585–590. https://doi.org/10.1038/267585a0

    Article  CAS  PubMed  Google Scholar 

  35. Piana S, Lindorff-Larsen K, Shaw DE (2012) Protein folding kinetics and thermodynamics from atomistic simulation. Proc Natl Acad Sci 109(44):17845–17850. https://doi.org/10.1073/pnas.1201811109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hu J, Sun X, Kang Z, Cheng J (2023) Computational investigation of functional water molecules in GPCRs bound to G protein or arrestin. J Comput Aided Mol Des 37(2):91–105. https://doi.org/10.1007/s10822-022-00492-z

    Article  CAS  PubMed  Google Scholar 

  37. Rudrapal M, Issahaku AR, Agoni C et al (2022) In silico screening of phytopolyphenolics for the identification of bioactive compounds as novel protease inhibitors effective against SARS-CoV-2. J Biomol Struct Dyn 40(20):10437–10453. https://doi.org/10.1080/07391102.2021.1944909

    Article  CAS  PubMed  Google Scholar 

  38. Pande VS, Beauchamp K, Bowman GR (2010) Everything you wanted to know about Markov state models but were afraid to ask. Methods 52(1):99–105. https://doi.org/10.1016/j.ymeth.2010.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chodera JD, Noé F (2014) Markov state models of biomolecular conformational dynamics. Curr Opin Struct Biol 25:135–144. https://doi.org/10.1016/j.sbi.2014.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schrödinger Release 2015-3 (2015) Maestro. Schrödinger, LLC, New York

  41. Schrödinger Release 2015-3 (2015) Desmond molecular dynamics system. Schrödinger, LLC, New York

  42. Harder E, Damm W, Maple J et al (2016) OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J Chem Theory Comput 12(1):281–296. https://doi.org/10.1021/acs.jctc.5b00864

    Article  CAS  PubMed  Google Scholar 

  43. Martyna GJ, Klein ML, Tuckerman M (1992) Nosé-Hoover chains: the canonical ensemble via continuous dynamics. J Chem Phys 97(4):2635–2643. https://doi.org/10.1063/1.463940

    Article  Google Scholar 

  44. Martyna GJ, Tobias DJ, Klein ML (1994) Constant pressure molecular dynamics algorithms. J Chem Phys 101(5):4177–4189. https://doi.org/10.1063/1.467468

    Article  CAS  Google Scholar 

  45. Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830. https://doi.org/10.48550/arXiv.1201.0490

    Article  Google Scholar 

  46. Gowers RJ, Linke M, Barnoud J, et al (2016) MDAnalysis: a Python package for the rapid analysis of molecular dynamics simulations. In: Proceedings of the 15th python in science conference. SciPy Austin, p 105. https://doi.org/10.25080/Majora-629e541a-00e

  47. Michaud-Agrawal N, Denning EJ, Woolf TB, Beckstein O (2011) MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. J Comput Chem 32(10):2319–2327. https://doi.org/10.1002/jcc.21787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sun X, Singh S, Blumer KJ, Bowman GR (2018) Simulation of spontaneous G protein activation reveals a new intermediate driving GDP unbinding. Elife 7:e38465. https://doi.org/10.7554/eLife.38465.001

    Article  PubMed  PubMed Central  Google Scholar 

  49. Norris JR (1998) Markov chains. Cambridge University Press, Cambridge

    Google Scholar 

  50. Lu S, Jang H, Nussinov R, Zhang J (2016) The structural basis of oncogenic mutations G12, G13 and Q61 in small GTPase K-Ras4B. Sci Rep 6(1):1–15. https://doi.org/10.1038/srep21949

    Article  CAS  Google Scholar 

  51. Shima F, Ijiri Y, Muraoka S et al (2010) Structural basis for conformational dynamics of GTP-bound Ras protein. J Biol Chem 285(29):22696–22705. https://doi.org/10.1074/jbc.M110.125161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Araki M, Shima F, Yoshikawa Y et al (2011) Solution structure of the state 1 conformer of GTP-bound H-Ras protein and distinct dynamic properties between the state 1 and state 2 conformers. J Biol Chem 286(45):39644–39653. https://doi.org/10.1074/jbc.M111.227074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lu S, Jang H, Muratcioglu S et al (2016) Ras conformational ensembles, allostery, and signaling. Chem Rev 116(11):6607–6665. https://doi.org/10.1021/acs.chemrev.5b00542

    Article  CAS  PubMed  Google Scholar 

  54. Pagba CV, Abebe AG, Gilbertson SR, Dilsha K (2021) Synthesis of substituted 7-(piperazin-1-yl)pyrazolo[1,5-a]pyrimidine analogs as inhibitors of KRAS. The Board of Regents of the University of Texas System, Assignee. Patent WO2021119343A1

  55. Mao Z, Xiao H, Shen P et al (2022) KRAS (G12D) can be targeted by potent inhibitors via formation of salt bridge. Cell Discov 8(1):1–14. https://doi.org/10.1038/s41421-021-00368-w

    Article  CAS  Google Scholar 

Download references

Acknowledgements

F.L. would like to thank Zhenchao Wei for his help with the analysis script.

Funding

This work was supported by the National Natural Science Foundation of China (Grant 22063004), the Youth project of Jiangxi Provincial Department of Education (Grant GJJ170696), the University Doctoral Fund (Grant 2017BSQD016), the Open Fund of Provincial Research Platform (Grant KFGJ19014), and the horizontal research funding (Grant H20210713181758000003).

Author information

Authors and Affiliations

Authors

Contributions

FL carried out the molecular dynamics simulations. FL and XS designed the study and analyzed the data. JC was responsible for the project. FL, XS, ZK, XD, HH, and JC contributed to writing and commenting on the manuscript.

Corresponding authors

Correspondence to Xianqiang Sun, Hu He or Jianxin Cheng.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4782 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, F., Kang, Z., Sun, X. et al. Inhibition mechanism of MRTX1133 on KRASG12D: a molecular dynamics simulation and Markov state model study. J Comput Aided Mol Des 37, 157–166 (2023). https://doi.org/10.1007/s10822-023-00498-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-023-00498-1

Keywords

Navigation