Skip to main content

Advertisement

Log in

Is there a common allosteric binding site for G-protein coupled receptors?

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Targeting the allosteric sites on G-protein coupled receptors (GPCRs) for drug discovery is attracting increased interest. Given a GPCR target, identifying the allosteric binding sites in it remains a challenge. Previous works from our and other labs suggest the intracellular region below the middle of the transmembrane (TM) domain that spatially overlaps with the G-protein binding site could contain a common allosteric site for all GPCRs. We performed several bioinformatics analyses on this site for more than 100 representative human GPCR structures. Results of the studies confirmed that the proposed region contains an allosteric site that is druggable for 89% of the GPCRs and is not 100% identical between a GPCR and its most similar homolog for 94% of the GPCRs. The physico-chemical properties and amino acid composition of this site vary among and within GPCR classes. Since this proposed region occupies the space existing in all GPCRs of known structure, it could represent a common host of an allosteric site for all GPCRs that can be targeted for structure-based allosteric drug design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All the data generated in this work is freely available in the supplementary materials or by contacting the corresponding author.

References

  1. Congreve M, de Graaf C, Swain NA, Tate CG (2020) Impact of GPCR Structures on Drug Discovery. Cell 181(1):81–91

    Article  CAS  Google Scholar 

  2. Foord SM, Bonner TI, Neubig RR, Rosser EM, Pin JP, Davenport AP, Spedding M, Harmar AJ (2005) International Union of pharmacology. XLVI. G protein-coupled receptor list. Pharmacol. Rev. 57(2):279–288

    Article  CAS  Google Scholar 

  3. Sriram K, Insel PA (2018) G protein-coupled receptors as targets for approved drugs: how many targets and how many drugs? Mol Pharmacol 93(4):251–258

    Article  CAS  Google Scholar 

  4. Topiol S (2018) Current and future challenges in GPCR drug discovery. Methods in Mol. Biol. 1705:1–21

    Article  CAS  Google Scholar 

  5. Conn PJ, Christopoulos A, Lindsley CW (2009) Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nature Rev Drug Disco 8(1):41–54

    Article  CAS  Google Scholar 

  6. Lütjens R, Rocher J-P (2017) Recent advances in drug discovery of GPCR allosteric modulators for neurodegenerative disorders. Curr Opin Pharmacol 32:91–95

    Article  Google Scholar 

  7. Harrington PE, Fotsch C (2007) Calcium sensing receptor activators: calcimimetics. Curr Med Chem 14(28):3027–3034

    Article  CAS  Google Scholar 

  8. Dorr P, Westby M, Dobbs S, Griffin P, Irvine B, Macartney M, Mori J, Rickett G, Smith-Burchnell C, Napier C, Webster R, Armour D, Price D, Stammen B, Wood A, Perros M (2005) Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity. Antimicrob Agents Chemother 49(11):4721–4732

    Article  CAS  Google Scholar 

  9. Wootten D, Miller LJ, Koole C, Christopoulos A, Sexton PM (2016) Allostery and biased agonism at class B G protein-coupled receptors. Chem Rev 117(1):111–138

    Article  Google Scholar 

  10. Pupo AS, Duarte DA, Lima V, Teixeira LB, Parreiras-E-Silva LT, Costa-Neto CM (2016) Recent updates on GPCR biased agonism. Pharmacol Res 112:49–57

    Article  CAS  Google Scholar 

  11. Chan HCS, Li Y, Dahoun T, Vogel H, Yuan S (2019) New binding sites, new opportunities for GPCR drug discovery. Trends Biochem Sci 44(4):312–330

    Article  CAS  Google Scholar 

  12. Thal DM, Glukhova A, Sexton PM, Christopoulos A (2018) Structural insights into G-protein-coupled receptor allostery. Nature 559(7712):45–53

    Article  CAS  Google Scholar 

  13. Zheng Y, Qin L, Zacarias NV, de Vries H, Han GW, Gustavsson M, Dabros M, Zhao C, Cherney RJ, Carter P, Stamos D, Abagyan R, Cherezov V, Stevens RC, IJzerman, A. P., Heitman, L. H., Tebben, A., Kufareva, I., & Handel, T. M. (2016) Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists. Nature 540(7633):458–461

    Article  CAS  Google Scholar 

  14. Oswald C, Rappas M, Kean J, Dore AS, Errey JC, Bennett K, Deflorian F, Christopher JA, Jazayeri A, Mason JS, Congreve M, Cooke RM, Marshall FH (2016) Intracellular allosteric antagonism of the CCR9 receptor. Nature 540(7633):462–465

    Article  CAS  Google Scholar 

  15. Liu X, Ahn S, Kahsai AW, Meng KC, Latorraca NR, Pani B, Venkatakrishnan AJ, Masoudi A, Weis WI, Dror RO, Chen X, Lefkowitz RJ, Kobilka BK (2017) Mechanism of intracellular allosteric beta2AR antagonist revealed by X-ray crystal structure. Nature 548(7668):480–484

    Article  CAS  Google Scholar 

  16. Song G, Yang D, Wang Y, de Graaf C, Zhou Q, Jiang S, Liu K, Cai X, Dai A, Lin G, Liu D, Wu F, Wu Y, Zhao S, Ye L, Han GW, Lau J, Wu B, Hanson MA et al (2017) Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators. Nature 546(7657):312–315

    Article  CAS  Google Scholar 

  17. Liu K, Wu L, Yuan S, Wu M, Xu Y, Sun Q, Li S, Zhao S, Hua T, Liu Z-J (2020) Structural basis of CXC chemokine receptor 2 activation and signalling. Nature 585(7823):135–140

    Article  CAS  Google Scholar 

  18. Redij T, Ma J, Li Z, Hua X, Li Z (2019) Discovery of a potential positive allosteric modulator of glucagon-like peptide 1 receptor through virtual screening and experimental study. J Comput Aided Mol Des 33(11):973–981

    Article  CAS  Google Scholar 

  19. Pándy-Szekeres G, Esguerra M, Hauser AS, Caroli J, Munk C, Pilger S, Keserű GM, Kooistra AJ, Gloriam DE (2022) The G protein database, GproteinDb. Nucleic Acids Res 50(D1):D518–D525

    Article  Google Scholar 

  20. Halgren T (2007) New method for fast and accurate binding-site identification and analysis. Chem Biol Drug Des 69(2):146–148

    Article  CAS  Google Scholar 

  21. Hussein HA, Borrel A, Geneix C, Petitjean M, Regad L, Camproux A-C (2015) Pock drug-server: a new web server for predicting pocket druggability on holo and apo proteins. Nucleic Acids Res 43(W1):W436-442

    Article  CAS  Google Scholar 

  22. UniProt Consortium (2019) UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res 47(D1):D506–D515

    Article  Google Scholar 

  23. García-Nafría J, Tate CG (2020) Cryo-electron microscopy: moving beyond x-ray crystal structures for drug receptors and drug development. Annu Rev Pharmacol Toxicol 60:51–71

    Article  Google Scholar 

  24. Sanchez-Reyes OB, Cooke ALG, Tranter DB, Rashid D, Eilers M, Reeves PJ, Smith SO (2017) G protein-coupled receptors contain two conserved packing clusters. Biophys J 112(11):2315–2326

    Article  CAS  Google Scholar 

  25. Katritch V, Cherezov V, Stevens RC (2012) Diversity and modularity of G protein-coupled receptor structures. Trends Pharmacol Sci 33(1):17–27

    Article  CAS  Google Scholar 

  26. Santos R, Ursu O, Gaulton A, Bento AP, Donadi RS, Bologa CG, Karlsson A, Al-Lazikani B, Hersey A, Oprea TI, Overington JP (2017) A comprehensive map of molecular drug targets. Nature Rev Drug Discov 16(1):19–34

    Article  CAS  Google Scholar 

  27. Jumper J, Evans R, Pritzel A et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589

    Article  CAS  Google Scholar 

  28. Syrovatkina V, Alegre KO, Dey R, Huang X-Y (2016) Regulation, signaling, and physiological functions of G-proteins. J Mol Biol 428(19):3850–3868

    Article  CAS  Google Scholar 

  29. Fauman EB, Rai BK, Huang ES (2011) Structure-based druggability assessment—identifying suitable targets for small molecule therapeutics. Curr Opin Chem Biol 15(4):463–468

    Article  CAS  Google Scholar 

  30. Hauser AS, Kooistra AJ, Munk C, Heydenreich FM, Veprintsev DB, Bouvier M, Babu MM, Gloriam DE (2021) GPCR activation mechanisms across classes and macro/microscales. Nature Struct Mol Biol 28(11):879–888

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Michael Bruist at University of the Sciences in Philadelphia for proofreading the manuscript and helpful comments. This work was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number [R15GM140406]. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Li.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 54 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, F., Li, Z. Is there a common allosteric binding site for G-protein coupled receptors?. J Comput Aided Mol Des 36, 405–413 (2022). https://doi.org/10.1007/s10822-022-00454-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-022-00454-5

Keywords

Navigation