Skip to main content
Log in

Contact networks in RNA: a structural bioinformatics study with a new tool

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Base pairing in RNA are significantly rich and versatile due to the potential non-canonical base pairing amongst nucleotides. Not only that, one base in RNA can pair with more than one bases simultaneously. This opens up a new dimension of research to detect such types of base-base pair networks in RNA and to analyze them. Even if a base do not form a pair, it may have significant extent of \(\pi\)-\(\pi\) stacking overlap that can stabilize the structures. In this work, we report a software tool, called BPNet, that accepts a mmCIF or PDB file and computes the base-pair/\(\pi\)-\(\pi\) contact network components using graph formalism. The software can run on Linux platform in both serial and parallel modes. It generates several information in suitable file formats for visualization of the networks. This paper describes the BPNet software and also presents some interesting results obtained by analyzing several RNA structures by the software to show its effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

BPNet is Available at: https://github.com/computational-biology/bpnet;branch:master

References

  1. Voet D, Voet JG (1990) Biochemistry. Wiley, New York

    Google Scholar 

  2. Miao Z, Westhof E (2017) RNA structure: advances and assessment of 3d structure prediction. Ann Rev Biophys 46(1):483–503

    Article  CAS  Google Scholar 

  3. Luo J, Bruice TC (2002) Ten-nanosecond molecular dynamics simulation of the motions of the horse liver alcohol dehydrogenasephch2o-complex. Proc Natl Acad Sci 99(26):16597–16600

    Article  CAS  Google Scholar 

  4. Leontis NB, Westhof E (2001) Geometric nomenclature and classification of RNA base pairs. RNA 7(4):499–512

    Article  CAS  Google Scholar 

  5. Almakarem ASA, Petrov AI, Stombaugh J, Zirbel CL, Leontis NB (2011) Comprehensive survey and geometric classification of base triples in RNA structures. Nucleic Acids Res 40(4):1407–1423

    Article  Google Scholar 

  6. Firdaus-Raih M, Hamdani HY, Nadzirin N, Ramlan EI, Willett P, Artymiuk PJ (2014) COGNAC: a web server for searching and annotating hydrogen-bonded base interactions in RNA three-dimensional structures. Nucleic Acids Res 42(W1):W382–W388

    Article  CAS  Google Scholar 

  7. Bhattacharya S, Jhunjhunwala A, Halder A, Bhattacharyya D, Mitra A (2019) Going beyond base-pairs: topology-based characterization of base-multiplets in RNA. RNA 25(5):573–589

    Article  CAS  Google Scholar 

  8. Hamdani HY, Firdaus-Raih M (2019) Identification of structural motifs using networks of hydrogen-bonded base interactions in RNA crystallographic structures. Crystals 9(11):550

    Article  CAS  Google Scholar 

  9. Kim SH, Quigley G, Suddath FL, McPherson A, Sneden D, Kim JJ, Weinzierl J, Blattmann P, Rich A (1972) The three-dimensional structure of yeast phenylalanine transfer RNA: shape of the molecule at 5.5-å resolution. Proc Natl Acad Sci 69(12):3746–3750

    Article  CAS  Google Scholar 

  10. Kim SH, Sussman JL, Suddath FL, Quigley GJ, McPherson A, Wang AHJ, Seeman NC, Rich A (1974) The general structure of transfer RNA molecules. Proc Natl Acad Sci 71(12):4970–4974

    Article  CAS  Google Scholar 

  11. Serganov A, Huang L, Patel DJ (2008) Structural insights into amino acid binding and gene control by a lysine riboswitch. Nature 455:1263–1267

    Article  CAS  Google Scholar 

  12. Mitra A, Sharma M, Bulusu G (2009) MD simulations of ligand-bound and ligand-free aptamer: molecular level insights into the binding and switching mechanism of the add a-riboswitch. RNA 15(9):1673–1692

    Article  Google Scholar 

  13. Wu L, Chai D, Fraser ME, Zimmerly S (2012) Structural variation and uniformity among tetraloop-receptor interactions and other loop-helix interactions in RNA crystal structures. PLoS ONE 7:e49225

    Article  CAS  Google Scholar 

  14. Sykes MT, Levitt M (2005) Describing RNA structure by libraries of clustered nucleotide doublets. J Mol Biol 351(1):26–38

    Article  CAS  Google Scholar 

  15. Berman HM, Olson WK, Beveridge DL, Westbrook J, Gelbin A, Demeny T, Hsieh SH, Srinivasan AR, Schneider B (1992) The nucleic acid database a comprehensive relational database of three-dimensional structures of nucleic acids. Biophys J 63(3):751–759

    Article  CAS  Google Scholar 

  16. Narayanan BC, Westbrook J, Ghosh S, Petrov AI, Sweeney B, Zirbel CL, Leontis NB, Berman HM (2013) The nucleic acid database: new features and capabilities. Nucleic Acids Res 42(D1):D114–D122

    Article  Google Scholar 

  17. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  Google Scholar 

  18. Das J, Mukherjee S, Mitra A, Bhattacharyya D (2006) Non-canonical base pairs and higher order structures in nucleic acids: crystal structure database analysis. J Biomol Struct Dyn 24(2):149–161

    Article  CAS  Google Scholar 

  19. Popenda M, Miskiewicz J, Sarzynska J, Zok T, Szachniuk M (2020) Topology-based classification of tetrads and quadruplex structures. Bioinformatics 36(4):1129–1134

    Article  CAS  Google Scholar 

  20. Zok T, Popenda M, Szachniuk M (2020) ElTetrado: a tool for identification and classification of tetrads and quadruplexes. BMC Bioinf 40(21):20

    Google Scholar 

  21. Sayle R, White EM (1995) Rasmol: biomolecular graphics for all. Trends Biochem Sci 20(9):374

    Article  CAS  Google Scholar 

  22. Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  23. Schrödinger, LLC (2015) The PyMOL molecular graphics system, version 2.5.0

  24. Jenner L, Demeshkina N, Yusupova G et al (2010) Structural rearrangements of the ribosome at the tRNA proofreading step. Nat Struct Mol Biol 17:1072–1078

    Article  CAS  Google Scholar 

  25. Darty K, Denise A, Ponty Y (2009) Varna: interactive drawing and editing of the RNA secondary structure. Bioinformatics (Oxford, England) 25(15):1974–1975

    Article  CAS  Google Scholar 

  26. Burley S.K., Bhikadiya C, Bi C, Bittrich S, Chen Li, Crichlow G.V., Christie C.H., Dalenberg K, Di Costanzo L, Duarte J. M, Dutta S, Feng Z, Ganesan S, Goodsell D.S., Ghosh S, Green R.K., Guranović V, Guzenko D, Hudson B.P., Lawson C.L., Liang Y, Lowe R, Namkoong H, Peisach E, Persikova I, Randle C, Rose A, Rose Y, Sali A, Segura J, Sekharan M, Shao C, Tao Y.P., Voigt M, Westbrook J.D., Young J.Y., Zardecki C, Zhuravleva M (2020) RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Research, 49(D1):D437–D451,

  27. Aydinkal R, Sercinoglu O, Ozbek P (2019) Prosnex: a web-based application for exploration and analysis of protein structures using network formalism. Nucleic Acids Res 47:W471–W476

    Article  CAS  Google Scholar 

  28. Chakrabarty B, Parekh N (2016) NAPS: network analysis of protein structures. Nucleic Acids Res 44(W1):W375–W382

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Dr. Debasish Mukherjee, Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, 55128 Mainz, Germany for his contribution to I/O subsystem of BPFIND.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhananjay Bhattacharyya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 12423 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, P., Bhattacharyya, D. Contact networks in RNA: a structural bioinformatics study with a new tool. J Comput Aided Mol Des 36, 131–140 (2022). https://doi.org/10.1007/s10822-021-00438-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-021-00438-x

Keywords

Navigation