Kass M, Rosenthal M, Pottackal J, McGann J (2013) Fear learning enhances neural responses to threat-predictive sensory stimuli. Science 342:1389–1392
CAS
PubMed
PubMed Central
Google Scholar
Block E (2018) Molecular basis of mammalian odor discrimination: a status report. J Agric Food Chem 66:13346–13366
CAS
PubMed
Google Scholar
McGann J (2017) Poor human olfaction is a nineteenth century myth. Science 356:7263
Google Scholar
Genva M, Kemene T, Deleu M, Lins L, Fauconnier M (2019) Is it possible to predict the odor of a molecule on the basis of its structure? Int J Mol Sci 20:3018
CAS
PubMed Central
Google Scholar
Buck L (2000) The molecular architecture of odor and pheromone sensing in mammals. Cell 100:611–618
CAS
PubMed
Google Scholar
Nara K, Saraiva L, Ye X, Buck L (2011) A large-scale analysis of odor coding in the olfactory epithelium. J Neurosci 31:9179–9191
CAS
PubMed
PubMed Central
Google Scholar
Araneda R, Kini A, Firestein S (2000) The molecular receptive range of an odorant receptor. Nat Neurosci 3:1248–1255
CAS
PubMed
Google Scholar
Yeshurun Y, Sobel N (2010) An odor is not worth a thousand words: from multidimensional odors to unidimensional odor objects. Annu Rev Psychol 61:219–241
PubMed
Google Scholar
Zufall F, Leinders-Zufall T (2000) The cellular and molecular basis of odor adaptation. Chem Senses 25:473–481
CAS
PubMed
Google Scholar
Kraft P (2018) The odor value concept in the formal analysis of olfactory art. Helvetica 102:e1800185
Google Scholar
Dunkel A, Steinhaus M, Kotthoff M, Nowak B, Krautwurst D, Schieberie P, Hoffmann T (2014) Nature’s chemical signatures in human olfaction: a foodborne perspective for future biotechnology. Angew Chem Int Ed 53:7124–7143
CAS
Google Scholar
Rossiter K (1996) Structure-odor relationships. Chem Rev 96:3201–3240
CAS
PubMed
Google Scholar
Kraft P, Bajgrowicz J, Denis C, Frater G (2000) Odds and trends: recent developments in the chemistry of odorants. Angew Chem Int Ed 39:2980–3010
CAS
Google Scholar
Kraft P, Di Cristofaro V, Jordi A (2014) From cassyrane to cashmeran—the molecular parameters of odorants. Chem Biodiver 11:1567–1596
CAS
Google Scholar
Zhan W, Doro F, Teixeira M (2019) A rapid approach to optimize the design of fragrances for fabric care products. Flavor Frag J 35:167–173
Google Scholar
Trimmer C, Keller A, Murphy N, Snyder L, Willer J, Nagai M, Katsanis N, Vosshall L, Matsunami H, Mainland J (2019) Genetic variation across the human olfactory receptor repertoire alters odor perception. PNAS 116:9575–9580
Google Scholar
Teixeria M, Barrault L, Rodriguez O, Carvalho C, Rodrigues A (2014) Perfumery radar 2.0: a step toward fragrance design and classification. Ind Eng Chem Res 53:8890–8912
Google Scholar
Ruddigkeit L, Awale M, Reymond J (2014) Expanding the fragrance chemical space for virtual screening. J Cheminform 6:27
PubMed
PubMed Central
Google Scholar
Medino-Franco J, Martinez-Mayorga K, Peppard T, Del Rio A (2012) Chemoinformatic analysis of GRAS (generally recognized as safe) flavor chemicals and natural products. PLoS ONE 7:e50798
Google Scholar
Brenna E, Fuganti C, Serra S (2003) Enantioselective perception of chiral odorants. Tetrahedron Asymmetry 14:1–42
CAS
Google Scholar
Schleyer P, Allinger N, Clark T, Gasteiger J, Kollman P, Schaefer H, Schreiner P (eds) (1998) Encyclopedia of computational chemistry. Wiley, Chichester
Google Scholar
Breiman L (2001) Random forests. Mach Learn 45:5–32
Google Scholar
Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, Cambridge
Google Scholar
Hunt P, Hosseini-Gerami L, Chrien T, Plante J, Ponting D, Segall M (2020) Predicting pKa using a combination of semi-empirical quantum mechanics and radial basis function methods. J Chem Inf Model 60:2989–2997
CAS
PubMed
Google Scholar
Obrezanova O, Csanyi G, Gola J, Segall M (2007) Gaussian processes: a method for automatic QSAR modelling of ADME properties. J Chem Inf Model 47:1847–1857
CAS
PubMed
Google Scholar
Sadawi N, Olier I, Vanschoren J, van Rijn R, Besnard J, Bickerton R, Grosan C, Soldatova L, King R (2019) Multi-task learning with a natural metric for quantitative structure activity relationship learning. J Cheminform 11:68
PubMed
PubMed Central
Google Scholar
Feinberg E, Sur D, Wu Z, Husic B, Mai H, Li Y, Sun S, Yang J, Ramsundar B, Pande V (2018) PotentialNet for molecular property prediction. ACS Cent Sci 4:1520–1530
CAS
PubMed
PubMed Central
Google Scholar
Nozaki Y, Nakamoto T (2018) Predictive modeling for odor character of a chemical using machine learning combined with natural language processing. PLoS ONE 13:e0198475
PubMed
PubMed Central
Google Scholar
Gunaratne T, Gonzalez Viejo C, Gunaratne N, Torrico D, Dunshea F, Fuentes S (2019) Chocolate quality assessment based on chemical fingerprinting using near infra-red and machine learning modeling. Foods 8:426
CAS
PubMed Central
Google Scholar
Dagan-Wiener A, Nissim I, Ben Abu N, Borgonovo G, Bassoli A, Niv M (2017) Bitter or not? BitterPredict, a tool for predicting taste from chemical structure. Sci Rep 7:12074
PubMed
PubMed Central
Google Scholar
Shang L, Liu C, Tomiura Y, Hayashi K (2017) Machine-learning-based olfactometer: prediction of odor perception from physicochemical features of odorant molecules. Anal Chem 89:11999–12005
CAS
PubMed
Google Scholar
Irwin B, Mahmoud S, Whitehead T, Conduit G, Segall M (2020) Imputation versus prediction: applications in machine learning for drug discovery. Future Drug Discov 2:38
Google Scholar
Whitehead T, Irwin B, Hunt PSM, Conduit G (2019) Imputation of assay bioactivity data using deep learning. J Chem Inf Model 59:1197–1204
CAS
PubMed
Google Scholar
Irwin B, Levell J, Whitehead T, Segall M, Conduit G (2020) Practical applications of deep learning to impute heterogeneous drug discovery data. J Chem Inf Model 60:2848–2857
CAS
PubMed
Google Scholar
Irwin B, Whitehead T, Rowland S, Mahmoud S, Conduit G, Segall M (2021) Deep imputation on large-scale drug discovery data. Appl. AI Lett. 2:e31
Google Scholar
Segall M, Champness E (2015) The challenges of making decisions using uncertain data. J Comp-Aided Mol Des 29:809–816
CAS
Google Scholar
Hirschfeld L, Swanson K, Yang K, Barzilay R, Coley C (2020) Uncertainty quantification using neural networks for molecular property prediction. J Chem Inf Model 60:3770–3780
CAS
PubMed
Google Scholar
Verpoort PC, MacDonald P, Conduit GJ (2018) Materials data validation and imputation with an artificial neural network. Comput Mater Sci 147:176–185
CAS
Google Scholar
Bergstra J, Bardenet R, Bengio Y, Kégl B (2011) NIPS’11: proceedings of the 24th international conference on neural information processing. Red Hook, New York
Google Scholar
Bergstra J, Komer B, Eliasmith C, Yamins D, Cox DD (2015) Hyperopt: a python library for model selection and hyperparameter optimization. Comput Sci Discov 8:014008
Google Scholar
Optibrium Ltd. “StarDrop,” [Online]. https://www.optibrium.com/stardrop. Accessed 27 Sept 2021
Yang K, Swanson K, Jin W, Coley C, Eiden P, Gao H, Guzman-Perez A, Hopper T, Kelley B, Mathea M, Palmer A, Settels V, Jaakkola T, Jensen K, Barzilay R (2019) Analyzing learned molecular representations for property prediction. J Chem Inf Model 59:3370–3388
CAS
PubMed
PubMed Central
Google Scholar
Green G, Dalton P, Cowart B, Shaffer G, Rankin K, Higgins J (1996) Evaluating the “labeled magnitude scale” for measuring sensations of taset and smell. Chem Senses 21:323–334
CAS
PubMed
Google Scholar
ASTM International (2019) ASTM E679-19, standard practice for determination of odor and taste thresholds by a forced-choice ascending concentration series method of limits. ASTM International, West Conshohocken
Google Scholar