Skip to main content
Log in

In silico modeling of PAX8–PPARγ fusion protein in thyroid carcinoma: influence of structural perturbation by fusion on ligand-binding affinity

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Paired box 8 (PAX8)peroxisome proliferator-activated receptor γ (PPARγ) rearrangement is believed to play an important role in tumorigenesis of PAX8–PPARγ fusion protein (PPFP) thyroid carcinomas, while without establishing any standard treatment, including drugs. Although PPFP is a potential promising target for therapeutic agents, the three-dimensional (3D) structure and functions have not yet been experimentally elucidated. In this study, we aimed to construct the 3D structure of PPFP and to aid in the development of therapies that can target PPFP for thyroid carcinomas. The 3D structure of PPFP was constructed by homology modeling based on crystallographic structure data. To validate the modeled structure, we analyzed the thermal fluctuations by molecular dynamics simulations and predicted the physical properties using bioinformatic analyses. We found that the modeled structure was stable under hydrated conditions and had features indicating the actual existence of the structure. Furthermore, the binding free energies of the ligand rosiglitazone with PPARγ and PPFP were evaluated by the molecular mechanics-Poisson–Boltzmann surface area method. We found that rosiglitazone has different binding affinities for the same binding pockets of PPARγ and PPFP, and the optimal compound for PPFP can differ from that of PPARγ. This suggests the need for the development of drugs targeting PPFP that allow for the fusion, rather than focusing on the PPARγ side of PPFP and searching for the best compounds for that pocket. Our findings are expected to lead to the development of new therapies for thyroid tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

All data generated during this study are included in this published article.

Code availability

Molecular Operating Environment (MOE) version 2018.01 and AMBER 16 package are commercially available. I-TASSER, GOR, ProtParam, Phyre2, and ProSA are freely available on the internet.

References

  1. Cancer Information Service, National Cancer Center J (2020) Projected cancer statistics. https://ganjoho.jp/en/public/statistics/short_pred.html

  2. Haugen BR, Alexander EK, Bible KC et al (2016) 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 26:1–133. https://doi.org/10.1089/thy.2015.0020

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ito Y, Onoda N, Okamoto T (2020) The revised clinical practice guidelines on the management of thyroid tumors by the Japan associations of endocrine surgeons: core questions and recommendations for treatments of thyroid cancer. Endocr J. https://doi.org/10.1507/endocrj.EJ20-0025

    Article  PubMed  Google Scholar 

  4. Klemke M, Drieschner N, Laabs A et al (2011) On the prevalence of the PAX8-PPARG fusion resulting from the chromosomal translocation t(2;3)(q13;p25) in adenomas of the thyroid. Cancer Genet 204:334–339. https://doi.org/10.1016/j.cancergen.2011.05.001

    Article  CAS  PubMed  Google Scholar 

  5. Wells SA, Robinson BG, Gagel RF et al (2012) Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III Trial. J Clin Oncol 30:134–141. https://doi.org/10.1200/JCO.2011.35.5040

    Article  CAS  PubMed  Google Scholar 

  6. Schlumberger M, Tahara M, Wirth LJ et al (2015) Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med 372:621–630. https://doi.org/10.1056/NEJMoa1406470

    Article  CAS  PubMed  Google Scholar 

  7. Brose MS, Nutting CM, Jarzab B et al (2014) Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet 384:319–328. https://doi.org/10.1016/S0140-6736(14)60421-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kroll TG (2000) PAX8-PPARgamma 1 fusion in oncogene human thyroid carcinoma. Science 289:1357–1360. https://doi.org/10.1126/science.289.5483.1357

    Article  CAS  PubMed  Google Scholar 

  9. Blake JA, Ziman MR (2014) Pax genes: regulators of lineage specification and progenitor cell maintenance. Development 141:737–751. https://doi.org/10.1242/dev.091785

    Article  CAS  PubMed  Google Scholar 

  10. Pasca di Magliano M, Di Lauro R, Zannini M (2000) Pax8 has a key role in thyroid cell differentiation. Proc Natl Acad Sci USA 97:13144–13149. https://doi.org/10.1073/pnas.240336397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rosen ED, Sarraf P, Troy AE et al (1999) PPARγ is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell 4:611–617. https://doi.org/10.1016/S1097-2765(00)80211-7

    Article  CAS  PubMed  Google Scholar 

  12. Yamauchi T, Kamon J, Waki H et al (2001) The mechanisms by which both heterozygous peroxisome proliferator-activated receptor γ (PPARγ) deficiency and PPARγ agonist improve insulin resistance. J Biol Chem 276:41245–41254. https://doi.org/10.1074/jbc.M103241200

    Article  CAS  PubMed  Google Scholar 

  13. Patel L, Pass I, Coxon P et al (2001) Tumor suppressor and anti-inflammatory actions of PPARγ agonists are mediated via upregulation of PTEN. Curr Biol 11:764–768. https://doi.org/10.1016/S0960-9822(01)00225-1

    Article  CAS  PubMed  Google Scholar 

  14. Giordano TJ (2006) Delineation, functional validation, and bioinformatic evaluation of gene expression in thyroid follicular carcinomas with the pax8-pparg translocation. Clin Cancer Res 12:1983–1993. https://doi.org/10.1158/1078-0432.CCR-05-2039

    Article  CAS  PubMed  Google Scholar 

  15. Prete A, Borges de Souza P, Censi S et al (2020) Update on fundamental mechanisms of thyroid cancer. Front Endocrinol (Lausanne) 11:1–10. https://doi.org/10.3389/fendo.2020.00102

    Article  Google Scholar 

  16. Dobson ME, Diallo-Krou E, Grachtchouk V et al (2011) Pioglitazone induces a proadipogenic antitumor response in mice with PAX8-PPARγ fusion protein thyroid carcinoma. Endocrinology 152:4455–4465. https://doi.org/10.1210/en.2011-1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu B, O’Donnell M, O’Donnell J et al (2016) Adipogenic differentiation of thyroid cancer cells through the Pax8-PPARγ fusion protein is regulated by thyroid transcription factor 1 (TTF-1). J Biol Chem 291:19274–19286. https://doi.org/10.1074/jbc.M116.740324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen N, Schill RL, O’Donnell M et al (2019) The transcription factor NKX1-2 promotes adipogenesis and may contribute to a balance between adipocyte and osteoblast differentiation. J Biol Chem 294:18408–18420. https://doi.org/10.1074/jbc.RA119.007967

    Article  PubMed  PubMed Central  Google Scholar 

  19. Giordano TJ, Haugen BR, Sherman SI et al (2018) Pioglitazone therapy of PAX8-PPARγ fusion protein thyroid carcinoma. J Clin Endocrinol Metab 103:1277–1281. https://doi.org/10.1210/jc.2017-02533

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yang J, Yan R, Roy A et al (2015) The I-TASSER Suite: protein structure and function prediction. Nat Methods 12:7–8. https://doi.org/10.1038/nmeth.3213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Baker D (2001) Protein structure prediction and structural genomics. Science 294:93–96. https://doi.org/10.1126/science.1065659

    Article  CAS  PubMed  Google Scholar 

  22. Shamriz S, Ofoghi H (2016) Design, structure prediction and molecular dynamics simulation of a fusion construct containing malaria pre-erythrocytic vaccine candidate, PfCelTOS, and human interleukin 2 as adjuvant. BMC Bioinf 17:71. https://doi.org/10.1186/s12859-016-0918-8

    Article  CAS  Google Scholar 

  23. Bateman A (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47:D506–D515. https://doi.org/10.1093/nar/gky1049

    Article  CAS  Google Scholar 

  24. Raman P, Koenig RJ (2014) Pax-8-PPAR-γ fusion protein in thyroid carcinoma. Nat Rev Endocrinol 10:616–623. https://doi.org/10.1038/nrendo.2014.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vuttariello E, Biffali E, Pannone R et al (2018) Rapid methods to create a positive control and identify the PAX8/PPARγ rearrangement in FNA thyroid samples by molecular biology. Oncotarget 9:19255–19262. https://doi.org/10.18632/oncotarget.24995

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sievers F, Wilm A, Dineen D et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539. https://doi.org/10.1038/msb.2011.75

    Article  PubMed  PubMed Central  Google Scholar 

  27. Garnier J, Gibrat J-F, Robson B (1996) [32] GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol 66:540–553

    Article  Google Scholar 

  28. Molecular operating environment (MOE), version 2018.01. Chem. Comput. Gr. ULC, Montreal, QC, Canada (2018)

  29. Case DA, Betz RM, Cerutti DS et al (2016) Amber 2016. University of California, San Francisco

    Google Scholar 

  30. Maier JA, Martinez C, Kasavajhala K et al (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11:3696–3713. https://doi.org/10.1021/acs.jctc.5b00255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zgarbová M, Šponer J, Otyepka M et al (2015) Refinement of the sugar–phosphate backbone torsion beta for amber force fields improves the description of Z- and B-DNA. J Chem Theory Comput 11:5723–5736. https://doi.org/10.1021/acs.jctc.5b00716

    Article  CAS  PubMed  Google Scholar 

  32. Wang J, Wolf RM, Caldwell JW et al (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174. https://doi.org/10.1002/jcc.20035

    Article  CAS  PubMed  Google Scholar 

  33. Jakalian A, Bush BL, Jack DB, Bayly CI (2000) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method. J Comput Chem 21:132–146. https://doi.org/10.1002/(SICI)1096-987X(20000130)21:2%3c132::AID-JCC5%3e3.0.CO;2-P

    Article  CAS  Google Scholar 

  34. Pang YP (2001) Successful molecular dynamics simulation of two zinc complexes bridged by a hydroxide in phosphotriesterase using the cationic dummy atom method. Proteins Struct Funct Genet. https://doi.org/10.1002/prot.1138

    Article  PubMed  Google Scholar 

  35. Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys. https://doi.org/10.1063/1.445869

    Article  Google Scholar 

  36. Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341. https://doi.org/10.1016/0021-9991(77)90098-5

    Article  CAS  Google Scholar 

  37. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N ⋅log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092. https://doi.org/10.1063/1.464397

    Article  CAS  Google Scholar 

  38. Ester M, Kriegel H-P, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd international conference on knowledge discovery and data mining

  39. Gasteiger E, Hoogland C, Gattiker A et al (2005) The proteomics protocols handbook. Humana Press, Totowa, NJ

    Google Scholar 

  40. Kelley LA, Mezulis S, Yates CM et al (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858. https://doi.org/10.1038/nprot.2015.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Miller BR, McGee TD, Swails JM et al (2012) MMPBSA.py: an efficient program for end-state free energy calculations. J Chem Theory Comput 8:3314–3321. https://doi.org/10.1021/ct300418h

    Article  CAS  PubMed  Google Scholar 

  42. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. https://doi.org/10.1002/bip.360221211

    Article  PubMed  Google Scholar 

  43. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410. https://doi.org/10.1093/nar/gkm290

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

ST would like to acknowledge the Grants-in-Aid for Scientific Research (Nos. 17H06353 and 18K03825) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Funding

This work is funded by the Grants-in-Aid for Scientific Research (Nos. 17H06353 and 18K03825) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Author information

Authors and Affiliations

Authors

Contributions

KS, YO and ST designed the research. KS performed the modeling and simulations. KS, YO and ST analyzed the results. KS wrote the manuscript under the supervision of YO and ST. All the authors reviewed and approved the final manuscript.

Corresponding authors

Correspondence to Kaori Sakaguchi, Yoshio Okiyama or Shigenori Tanaka.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 485 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakaguchi, K., Okiyama, Y. & Tanaka, S. In silico modeling of PAX8–PPARγ fusion protein in thyroid carcinoma: influence of structural perturbation by fusion on ligand-binding affinity. J Comput Aided Mol Des 35, 629–642 (2021). https://doi.org/10.1007/s10822-021-00381-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-021-00381-x

Keywords

Navigation