Skip to main content

Advertisement

Log in

In silico and in vitro anti-AChE activity investigations of constituents from Mytragyna speciosa for Alzheimer’s disease treatment

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Acetylcholinesterase (AChE), one of the major therapeutic strategies for the treatment of Alzheimer's disease (AD) is to increase the acetylcholine (ACh) level in the brain by inhibiting the biological activity of AChE. In this present work, a set of alkaloids and flavonoids against AChE enzyme were screened by computational chemistry techniques. The docking results showed that among alkaloid compounds the oxindole alkaloid namely mitragynine oxidole B (MITOB) and the indole alkaloids namely mitragynine (MIT) exhibited a good binding affinity towards AChE. These two compounds were then studied by molecular dynamics (MD) simulations. The binding free energy calculation and ligand–protein binding pattern suggested that both alkaloids could interact with AChE very well. Since MIT is the main alkaloid constituent of Mytragyna speciose leaves, this compound was isolated from M. speciose leaves and tested for anti-AChE activity. As a result, the isolated MIT had an inhibitory activity with pIC50 value of 3.57. This finding provided that the mitragynine compound has the potential to be as a therapeutic agent for further anti-AChE drug development in treatment of Alzheimer’s disease.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Parihar MS, Hemnani T (2004) Alzheimer’s disease pathogenesis and therapeutic interventions. Journal of Clinical Neuroscience 11(5):456–467. https://doi.org/10.1016/j.jocn.2003.12.007

    Article  CAS  PubMed  Google Scholar 

  2. World Alzheimer Report (2019) The global impact of dementia. https://www.alzint.org/resource/world-alzheimer-report-2019. Accessed 8 Apr 2020

  3. Scarpini E, Schelterns P, Feldman H (2003) Treatment of Alzheimer’s disease; current status and new perspectives. Lancet Neurol 2(9):539–547. https://doi.org/10.1016/S1474-4422(03)00502-7

    Article  CAS  PubMed  Google Scholar 

  4. Pohanaka M (2012) Acetylcholinesterase inhibitors: a patent review (2008—present). Expert Opin Ther Pat 22:871–886

    Article  Google Scholar 

  5. Kelly CA, Harvey RJ, Cayton H (1997) Drug treatments for Alzheimer’s disease. Br Med J 314:693–694

    Article  CAS  Google Scholar 

  6. Whitehouse PJ (1999) Cholinergic therapy in dementia. Acta Neurol Scand Suppl 149:42–45

    Google Scholar 

  7. Gottwald MD, Rozanski RI (1999) Rivastigmine, a brain region selective acetylcholinesterase inhibitor for treating Alzheimer’s disease: review and current status. Expert Opin Investig Drugs 8:1673–1682

    Article  CAS  Google Scholar 

  8. Scott LJ, Goa KL (2000) Galantamine: a review of its use in Alzheimer’s disease. Drugs 60:1095–1122

    Article  CAS  Google Scholar 

  9. Pan H, Zhang J, Wang Y, Cui K, Cao Y, Wang L, Wu Y (2019) Linarin improves the dyskinesia recovery in Alzheimer’s disease zebrafish by inhibiting the acetylcholinesterase activity. Life Sci 222:112–116. https://doi.org/10.1016/j.lfs.2019.02.046

    Article  CAS  PubMed  Google Scholar 

  10. Ng YP, Or TCT, Ip NY (2015) Plant alkaloids as drug leads for Alzheimer’s disease. Neurochem Int 89:260–270. https://doi.org/10.1016/j.neuint.2015.07.018

    Article  CAS  PubMed  Google Scholar 

  11. Dash UC, Kanhar S, Dixit A, Dandapat J, Sahoo AK (2019) Isolation, identification, and quantification of Pentylcurcumene from Geophila repens: a new class of cholinesterase inhibitor for Alzheimer’s disease. Bioorg Chem 88:102947. https://doi.org/10.1016/j.bioorg.2019.102947

    Article  CAS  PubMed  Google Scholar 

  12. Shrivastava SK, Sinha SK, Srivastava P, Tripathi PN, Sharma P, Tripathi MK, Tripathi A, Choubey PK, Waiker DK, Aggarwal LM, Dixit M, Kheruka SC, Gambhir S, Shankar S, Srivastava RK (2019) Design and development of novel p-aminobenzoic acid derivatives as potential cholinesterase inhibitors for the treatment of Alzheimer’s disease. Bioorg Chem 82:211–223. https://doi.org/10.1016/j.bioorg.2018.10.009

    Article  CAS  PubMed  Google Scholar 

  13. Yu LE, Mwesige B, Yi Y-S, Yoo BC (2019) Ginsenosides: the need to move forward from bench to clinical trials. J Ginseng Res 43(3):361–367

    Article  Google Scholar 

  14. Saklani A, Kutty SK (2008) Plant-derived compounds in clinical trials. Drug Discov Today 13(3):161–171. https://doi.org/10.1016/j.drudis.2007.10.010

    Article  CAS  PubMed  Google Scholar 

  15. Kongsune P, Hannongbua S (2018) The role of conserved QXG and binding affinity of S23G & S26G receptors on avian H5, swine H1 and human H1 of influenza A virus hemagglutinin. J Mol Graph Model 82:12–19. https://doi.org/10.1016/j.jmgm.2018.03.007

    Article  CAS  PubMed  Google Scholar 

  16. Choi RJ, Roy A, Jung HJ, Ali MY, Min B-S, Park CH, Yokozawa T, Fan T-P, Choi JS, Jung HA (2016) BACE1 molecular docking and anti-Alzheimer’s disease activities of ginsenosides. J Ethnopharmacol 190:219–230. https://doi.org/10.1016/j.jep.2016.06.013

    Article  CAS  PubMed  Google Scholar 

  17. Mishra CB, Kumari S, Manral A, Prakash A, Saini V, Lynn AM, Tiwari M (2017) Design, synthesis, in-silico and biological evaluation of novel donepezil derivatives as multi-target-directed ligands for the treatment of Alzheimer’s disease. Eur J Med Chem 125:736–750. https://doi.org/10.1016/j.ejmech.2016.09.057

    Article  CAS  PubMed  Google Scholar 

  18. Vijayakumar S, Manogar P, Prabhu S, Sanjeevkumar Singh RA (2018) Novel ligand-based docking; molecular dynamic simulations; and absorption, distribution, metabolism, and excretion approach to analyzing potential acetylcholinesterase inhibitors for Alzheimer’s disease. J Pharm Anal 8(6):413–420. https://doi.org/10.1016/j.jpha.2017.07.006

    Article  PubMed  Google Scholar 

  19. Hassan M, Abbasi MA, Aziz ur R, Siddiqui SZ, Hussain G, Shah SAA, Shahid M, Seo S-Y (2018) Exploration of synthetic multifunctional amides as new therapeutic agents for Alzheimer’s disease through enzyme inhibition, chemoinformatic properties, molecular docking and dynamic simulation insights. J Theor Biol 458:169–183. https://doi.org/10.1016/j.jtbi.2018.09.018

    Article  CAS  PubMed  Google Scholar 

  20. Cheng Z-Q, Zhu K-K, Zhang J, Song J-L, Muehlmann LA, Jiang C-S, Liu C-L, Zhang H (2019) Molecular-docking-guided design and synthesis of new IAA-tacrine hybrids as multifunctional AChE/BChE inhibitors. Bioorg Chem 83:277–288. https://doi.org/10.1016/j.bioorg.2018.10.057

    Article  CAS  PubMed  Google Scholar 

  21. Borioni JL, Cavallaro V, Pierini AB, Murray AP, Peñéñory AB, Puiatti M, García ME (2020) An activity prediction model for steroidal and triterpenoidal inhibitors of acetylcholinesterase enzyme. J Comput Aided Mol Des. https://doi.org/10.1007/s10822-020-00324-y

    Article  PubMed  Google Scholar 

  22. Lomlim L, Teerapat N (2011) New approach in development of acetylcholinesterase inhibitors for the treatment of Alzheimer’s disease. Thai Pharm Health Sci 6(2):157–173

    Google Scholar 

  23. Sun X, Jin L, Ling P (2012) Review of drugs for Alzheimer’s disease. Drug Discov Ther 6(6):285–290

    CAS  PubMed  Google Scholar 

  24. Dennington R, Keith T, Millam J (2009) Gaussview. Semichem Inc, Shawnee Mission KS, Shawnee

    Google Scholar 

  25. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian Inc., Wallingford

    Google Scholar 

  26. Bernstein FC, Koetzle TF, Williams GJ, Meyer EFJ, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol 112:535–542

    Article  CAS  Google Scholar 

  27. Cheung J, Rudolph MJ, Burshteyn F, Cassidy MS, Gary EN, Love J, Franklin MC, Height JJ (2012) Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J Med Chem 55(22):10282–10286

    Article  CAS  Google Scholar 

  28. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  29. Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity-a rapid access to atomic charges. Tetrahedron 36:3219–3228

    Article  CAS  Google Scholar 

  30. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  Google Scholar 

  31. Puiatti M, Borioni JL, Vallejo MG, Cabrera JL, Agnese AM, Ortega MG, Pierini AB (2013) Study of the interaction of Huperzia saururus Lycopodium alkaloids with the acetylcholinesterase enzyme. J Mol Graph Model 44:136–144. https://doi.org/10.1016/j.jmgm.2013.05.009

    Article  CAS  PubMed  Google Scholar 

  32. Huey R, Morris GM, Olson AJ, Goodsel DS (2007) A semiempirical free energy force field with charge-based desolvation. J Comput Chem 28:1145–1152

    Article  CAS  Google Scholar 

  33. Ermakova E (2016) Structural insight into the glucokinase-ligands interactions. Molecular docking study. Comput Biol Chem 64:281–296. https://doi.org/10.1016/j.compbiolchem.2016.08.001

    Article  CAS  PubMed  Google Scholar 

  34. Case DA, Darden TA, CheathamIII TE, Simmerling CL, Wang J, Duke RE, Luo R, Crowley M, Walker RC, Zhang W, Merz KM, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Mathews GCDH, Seetin MG, Sagui C, Babin V, Kollman PA (2014) AMBER 14. University of California, San Francisco

    Google Scholar 

  35. Cornell WD, Cieplak P, Bayly CI, Kollmann PA (1993) Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation. J Am Chem Soc 115:9620–9631

    Article  CAS  Google Scholar 

  36. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation forcefield for the simulation of proteins, nucleic-acids, and organic-molecules. J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  37. Bas DC, Rogers DM, Jensen JH (2008) Very fast prediction and rationalization of pKa values for protein-ligand complexes. Proteins 73:765–783

    Article  CAS  Google Scholar 

  38. Li H, Robertson AD, Jensen JH (2005) Very fast empirical prediction and rationalization of protein pKa values. Proteins 61:704–721

    Article  CAS  Google Scholar 

  39. Berendsen HJC, Postma JPM, Van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  40. Ryckaert JP, Cicotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  41. York DM, Darden TA, Pedersen LG (1993) The effect of long-range electrostatic interactions in simulations of macromolecular crystals: a comparison of the Ewald and truncated list methods. J Chem Phys 99:8345–8348

    Article  CAS  Google Scholar 

  42. Roe DR, Cheatham TE (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9(7):3084–3095

    Article  CAS  Google Scholar 

  43. Abdul Rahman Shamima SF, Hidayat MT, Hairuszah I, Moklas MAM, Arulselvan P (2012) Antinociceptive action of isolated mitragynine from Mitragyna Speciosa through activation of opioid receptor system. Int J Mol Sci 13:11427–11442

    Article  Google Scholar 

  44. Suhaimi FW, Yusoff NHM, Hassan R, Mansor SM, Navaratnam V, Müller CP, Hassan Z (2016) Neurobiology of Kratom and its main alkaloid mitragynine. Brain Res Bull 126:29–40. https://doi.org/10.1016/j.brainresbull.2016.03.015

    Article  CAS  PubMed  Google Scholar 

  45. Brown PN, Lund JA, Murch SJ (2017) A botanical, phytochemical and ethnomedicinal review of the genus Mitragyna korth: implications for products sold as kratom. J Ethnopharmacol 202:302–325. https://doi.org/10.1016/j.jep.2017.03.020

    Article  CAS  PubMed  Google Scholar 

  46. Bahadori MB, Dinparast L, Valizadeh H, Farimani MM, Ebrahimi SN (2016) Bioactive constituents from roots of Salvia syriaca L.: acetylcholinesterase inhibitory activity and molecular docking studies. S Afr J Bot 106:1–4. https://doi.org/10.1016/j.sajb.2015.12.003

    Article  CAS  Google Scholar 

  47. Nguyen HT, Doan HT, Ho DV, Pham KT, Raal A, Morita H (2018) Huperphlegmines A and B, two novel Lycopodium alkaloids with an unprecedented skeleton from Huperzia phlegmaria, and their acetylcholinesterase inhibitory activities. Fitoterapia 129:267–271. https://doi.org/10.1016/j.fitote.2018.07.016

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Thaksin University Research Fund and the Graduate School of Thaksin University. The authors would like to thank the Computational Chemistry Unit Cell, Faculty of Science, Chulalongkorn University, and the Department of Chemistry, Faculty of Science, Thaksin University, for providing research facilities, software packages and computing times.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panita Kongsune.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 2117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Innok, W., Hiranrat, A., Chana, N. et al. In silico and in vitro anti-AChE activity investigations of constituents from Mytragyna speciosa for Alzheimer’s disease treatment. J Comput Aided Mol Des 35, 325–336 (2021). https://doi.org/10.1007/s10822-020-00372-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-020-00372-4

Keywords

Navigation