Skip to main content
Log in

SAMPL7 Host–Guest Challenge Overview: assessing the reliability of polarizable and non-polarizable methods for binding free energy calculations

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The SAMPL challenges focus on testing and driving progress of computational methods to help guide pharmaceutical drug discovery. However, assessment of methods for predicting binding affinities is often hampered by computational challenges such as conformational sampling, protonation state uncertainties, variation in test sets selected, and even lack of high quality experimental data. SAMPL blind challenges have thus frequently included a component focusing on host–guest binding, which removes some of these challenges while still focusing on molecular recognition. Here, we report on the results of the SAMPL7 blind prediction challenge for host–guest affinity prediction. In this study, we focused on three different host–guest categories—a familiar deep cavity cavitand series which has been featured in several prior challenges (where we examine binding of a series of guests to two hosts), a new series of cyclodextrin derivatives which are monofunctionalized around the rim to add amino acid-like functionality (where we examine binding of two guests to a series of hosts), and binding of a series of guests to a new acyclic TrimerTrip host which is related to previous cucurbituril hosts. Many predictions used methods based on molecular simulations, and overall success was mixed, though several methods stood out. As in SAMPL6, we find that one strategy for achieving reasonable accuracy here was to make empirical corrections to binding predictions based on previous data for host categories which have been studied well before, though this can be of limited value when new systems are included. Additionally, we found that alchemical free energy methods using the AMOEBA polarizable force field had considerable success for the two host categories in which they participated. The new TrimerTrip system was also found to introduce some sampling problems, because multiple conformations may be relevant to binding and interconvert only slowly. Overall, results in this challenge tentatively suggest that further investigation of polarizable force fields for these challenges may be warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

SAMPL:

Statistical Assessment of the Modeling of Proteins and Ligands

AM1-BCC:

Austin model 1 bond charge correction

RESP:

Restrained electrostatic potential

REST:

Replica exchange with solute tempering

FSDAM:

Fast switching double annihilation method

B2PLYPD3:

Beck 2-parameter Lee–Yang–Parr D3 exchange-correlation functional [1]

B3PW91:

Becke 3-parameter Perdew–Wang 91 exchange-correlation functional [2]

GAFF:

Generalized AMBER force field

CGenFF:

CHARMM generalized force field

AMOEBA:

Atomic multipole optimized energetics for biomolecular simulations

DDM:

Double decoupling method

DFT:

Density functional theory

QM/MM:

Mixed quantum mechanics and molecular mechanics

MMPBSA:

Molecular mechanics Poisson–Boltzmann/solvent accessible surface area

MMGBSA:

Molecular mechanics generalized born/solvent accessible surface area

TIP3P:

Transferable interaction potential three-point

TIP4PEw:

Transferable interaction potential four-point Ewald

OPC3:

Optimal 3-point charge

SEM:

Standard error of the mean

RMSE:

Root mean squared error

MAE:

Mean absolute error

ME:

Mean signed error

\(\tau \) :

Kendall’s rank correlation coefficient (Tau)

\({R}^{2}\) :

Coefficient of determination (R-squared)

QM:

Quantum Mechanics

MM:

Molecular Mechanics

References

  1. Goerigk L, Grimme S (2011) Efficient and accurate double-hybrid-meta-GGA density functionals–evaluation with the extended GMTKN30 database for general main group thermochemistry, kinetics, and noncovalent interactions. J Chem Theory Comput. https://doi.org/10.1021/ct100466k

    Article  PubMed  Google Scholar 

  2. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32(7):1456–1465. https://doi.org/10.1002/jcc.21759

    Article  CAS  PubMed  Google Scholar 

  3. Yin J, Henriksen NM, Slochower DR, Shirts MR, Chiu MW, Mobley DL, Gilson MK (2017) Overview of the SAMPL5 Host–Guest Challenge: are we doing better? J Comput Aided Mol Des 31(1):1–19. https://doi.org/10.1007/s10822-016-9974-4

    Article  CAS  PubMed  Google Scholar 

  4. Rizzi A, Murkli S, McNeill JN, Yao W, Sullivan M, Gilson MK, Chiu MW, Isaacs L, Gibb BC, Mobley DL, Chodera JD (2018) Overview of the SAMPL6 host–guest binding affinity prediction challenge. J Comput Aided Mol Des 32(10):937–963. https://doi.org/10.1007/s10822-018-0170-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rizzi A, Jensen T, Slochower DR, Aldeghi M, Gapsys V, Ntekoumes D, Bosisio S, Papadourakis M, Henriksen NM, de Groot BL, Cournia Z, Dickson A, Michel J, Gilson MK, Shirts MR, Mobley DL, Chodera JD (2020) The SAMPL6 SAMPLing Challenge: assessing the reliability and efficiency of binding free energy calculations. J Comput Aided Mol Des. https://doi.org/10.1007/s10822-020-00290-5

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wang L, Wu Y, Deng Y, Kim B, Pierce L, Krilov G, Lupyan D, Robinson S, Dahlgren MK, Greenwood J, Romero DL, Masse C, Knight JL, Steinbrecher T, Beuming T, Damm W, Harder E, Sherman W, Brewer M, Wester R et al (2015) Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. J Am Chem Soc 137(7):2695–2703. https://doi.org/10.1021/ja512751q

    Article  CAS  PubMed  Google Scholar 

  7. Cournia Z, Allen B, Sherman W (2017) Relative binding free energy calculations in drug discovery: recent advances and practical considerations. J Chem Inf Model 57(12):2911–2937. https://doi.org/10.1021/acs.jcim.7b00564

    Article  CAS  PubMed  Google Scholar 

  8. Rocklin GJ, Mobley DL, Dill KA, Hünenberger PH (2013) Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: an accurate correction scheme for electrostatic finite-size effects. J Chem Phys 139(18):184103. https://doi.org/10.1063/1.4826261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mobley DL, Gilson MK (2017) Predicting binding free energies: frontiers and benchmarks. Annu Rev Biophys 46(1):531–558. https://doi.org/10.1146/annurev-biophys-070816-033654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Işık M, Bergazin TD, Fox T, Rizzi A, Chodera JD, Mobley DL (2020) Assessing the accuracy of octanol–water partition coefficient predictions in the SAMPL6 Part II Log P Challenge. J Comput Aided Mol Des 34(4):335–370. https://doi.org/10.1007/s10822-020-00295-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Laury ML, Wang Z, Gordon AS, Ponder JW (2018) Absolute binding free energies for the SAMPL6 cucurbit[8]uril host-guest challenge via the AMOEBA polarizable force field. J Comput Aided Mol Des 32(10):1087–1095. https://doi.org/10.1007/s10822-018-0147-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gapsys V, de Groot BL (2017) Pmx webserver: a user friendly interface for alchemistry. J Chem Inf Model. https://doi.org/10.1021/acs.jcim.6b00498

    Article  PubMed  Google Scholar 

  13. Schindler C, Baumann H, Blum A, Böse D, Buchstaller HP, Burgdorf L, Cappel D, Chekler E, Czodrowski P, Dorsch D, Eguida M, Follows B, Fuchß T, Grädler U, Gunera J, Johnson T, Jorand Lebrun C, Karra S, Klein M, Kötzner L et al (2020) Large-scale assessment of binding free energy calculations in active drug discovery projects. ChemRxiv. https://doi.org/10.26434/chemrxiv.11364884.v1

    Article  Google Scholar 

  14. Gapsys V, Pérez-Benito L, Aldeghi M, Seeliger D, van Vlijmen H, Tresadern G, de Groot BL (2020) Large scale relative protein ligand binding affinities using non-equilibrium alchemy. Chem Sci 11(4):1140–1152. https://doi.org/10.1039/C9SC03754C

    Article  CAS  Google Scholar 

  15. Muddana HS, Varnado CD, Bielawski CW, Urbach AR, Isaacs L, Geballe MT, Gilson MK (2012) Blind prediction of host-guest binding affinities: a new SAMPL3 challenge. J Comput Aided Mol Des 26(5):475–487. https://doi.org/10.1007/s10822-012-9554-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Skillman AG (2012) SAMPL3: blinded prediction of host–guest binding affinities, hydration free energies, and trypsin inhibitors. J Comput Aided Mol Des 26(5):473–474. https://doi.org/10.1007/s10822-012-9580-z

    Article  CAS  PubMed  Google Scholar 

  17. Muddana HS, Fenley AT, Mobley DL, Gilson MK (2014) The SAMPL4 host–guest blind prediction challenge: an overview. J Comput Aided Mol Des 28(4):305–317. https://doi.org/10.1007/s10822-014-9735-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Peat TS, Dolezal O, Newman J, Mobley DL, Deadman JJ (2014) Interrogating HIV integrase for compounds that bind—a SAMPL challenge. J Comput Aided Mol Des 28(4):347–362. https://doi.org/10.1007/s10822-014-9721-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gathiaka S, Liu S, Chiu M, Yang H, Stuckey JA, Kang YN, Delproposto J, Kubish G, Dunbar JB, Carlson HA, Burley SK, Walters WP, Amaro RE, Feher VA, Gilson MK (2016) D3R Grand Challenge 2015: evaluation of protein–ligand pose and affinity predictions. J Comput Aided Mol Des 30(9):651–668. https://doi.org/10.1007/s10822-016-9946-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gaieb Z, Liu S, Gathiaka S, Chiu M, Yang H, Shao C, Feher VA, Walters WP, Kuhn B, Rudolph MG, Burley SK, Gilson MK, Amaro RE (2018) D3R Grand Challenge 2: blind prediction of protein-ligand poses, affinity rankings, and relative binding free energies. J Comput Aided Mol Des 32(1):1–20. https://doi.org/10.1007/s10822-017-0088-4

    Article  CAS  PubMed  Google Scholar 

  21. Gaieb Z, Parks CD, Chiu M, Yang H, Shao C, Walters WP, Lambert MH, Nevins N, Bembenek SD, Ameriks MK, Mirzadegan T, Burley SK, Amaro RE, Gilson MK (2019) D3R Grand Challenge 3: blind prediction of protein-ligand poses and affinity rankings. J Comput Aided Mol Des 33(1):1–18. https://doi.org/10.1007/s10822-018-0180-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Parks CD, Gaieb Z, Chiu M, Yang H, Shao C, Walters WP, Jansen JM, McGaughey G, Lewis RA, Bembenek SD, Ameriks MK, Mirzadegan T, Burley SK, Amaro RE, Gilson MK (2020) D3R Grand Challenge 4: blind prediction of protein-ligand poses, affinity rankings, and relative binding free energies. J Comput Aided Mol Des 34(2):99–119. https://doi.org/10.1007/s10822-020-00289-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sherborne B, Shanmugasundaram V, Cheng AC, Christ CD, DesJarlais RL, Duca JS, Lewis RA, Loughney DA, Manas ES, McGaughey GB, Peishoff CE, van Vlijmen H (2016) Collaborating to improve the use of free-energy and other quantitative methods in drug discovery. J Comput Aided Mol Des 30(12):1139–1141. https://doi.org/10.1007/s10822-016-9996-y

    Article  CAS  PubMed  Google Scholar 

  24. Reif MM, Hünenberger PH (2011) Computation of methodology-independent single-ion solvation properties from molecular simulations. III. Correction terms for the solvation free energies, enthalpies, entropies, heat capacities, volumes, compressibilities, and expansivities of solvated ions. J Chem Phys 134(14):144103. https://doi.org/10.1063/1.3567020

    Article  CAS  PubMed  Google Scholar 

  25. Öhlknecht C, Lier B, Petrov D, Fuchs J, Oostenbrink C (2020) Correcting electrostatic artifacts due to net-charge changes in the calculation of ligand binding free energies. J Comput Chem 41(10):986–999. https://doi.org/10.1002/jcc.26143

    Article  CAS  PubMed  Google Scholar 

  26. Hünenberger PH, McCammon JA (1999) Ewald artifacts in computer simulations of ionic solvation and ion-ion interaction: a continuum electrostatics study. J Chem Phys 110(4):1856–1872. https://doi.org/10.1063/1.477873

    Article  Google Scholar 

  27. Lin YL, Aleksandrov A, Simonson T, Roux B (2014) An overview of electrostatic free energy computations for solutions and proteins. J Chem Theory Comput 10(7):2690–2709. https://doi.org/10.1021/ct500195p

    Article  CAS  PubMed  Google Scholar 

  28. Simonson T, Roux B (2016) Concepts and protocols for electrostatic free energies. Mol Simul 42(13):1090–1101. https://doi.org/10.1080/08927022.2015.1121544

    Article  CAS  Google Scholar 

  29. Ji C, Mei Y (2014) Some practical approaches to treating electrostatic polarization of proteins. Acc Chem Res 47(9):2795–2803. https://doi.org/10.1021/ar500094n

    Article  CAS  PubMed  Google Scholar 

  30. Zhang C, Lu C, Wang Q, Ponder JW, Ren P (2015) Polarizable multipole-based force field for dimethyl and trimethyl phosphate. J Chem Theory Comput 11(11):5326–5339. https://doi.org/10.1021/acs.jctc.5b00562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kognole AA, Aytenfisu AH, MacKerell AD (2020) Balanced polarizable Drude force field parameters for molecular anions: phosphates, sulfates, sulfamates, and oxides. J Mol Model 26(6):152. https://doi.org/10.1007/s00894-020-04399-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cerutti DS, Swope WC, Rice JE, Case DA (2014) Ff14ipq: a self-consistent force field for condensed-phase simulations of proteins. J Chem Theory Comput 10(10):4515–4534. https://doi.org/10.1021/ct500643c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhou A, Schauperl M, Nerenberg PS (2020) Benchmarking electronic structure methods for accurate fixed-charge electrostatic models. J Chem Inf Model 60(1):249–258. https://doi.org/10.1021/acs.jcim.9b00962

    Article  CAS  PubMed  Google Scholar 

  34. Schauperl M, Nerenberg PS, Jang H, Wang LP, Bayly CI, Mobley DL, Gilson MK (2020) Non-bonded force field model with advanced restrained electrostatic potential charges (RESP2). Commun Chem 3(1):1–11. https://doi.org/10.1038/s42004-020-0291-4

    Article  CAS  Google Scholar 

  35. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general Amber force field. J Comput Chem 25(9):1157–1174. https://doi.org/10.1002/jcc.20035

    Article  CAS  PubMed  Google Scholar 

  36. Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25(2):247–260. https://doi.org/10.1016/j.jmgm.2005.12.005

    Article  CAS  PubMed  Google Scholar 

  37. Mobley DL, Bannan CC, Rizzi A, Bayly CI, Chodera JD, Lim VT, Lim NM, Beauchamp KA, Slochower DR, Shirts MR, Gilson MK, Eastman PK (2018) Escaping atom types in force fields using direct chemical perception. J Chem Theory Comput. https://doi.org/10.1021/acs.jctc.8b00640

    Article  PubMed  PubMed Central  Google Scholar 

  38. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD (2009) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem. https://doi.org/10.1002/jcc.21367

    Article  Google Scholar 

  39. Vanommeslaeghe K, MacKerell AD (2012) Automation of the CHARMM general force field (CGenFF) I: bond perception and atom typing. J Chem Inf Model 52(12):3144–3154. https://doi.org/10.1021/ci300363c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vanommeslaeghe K, Raman EP, MacKerell AD (2012) Automation of the CHARMM general force field (CGenFF) II: assignment of bonded parameters and partial atomic charges. J Chem Inf Model 52(12):3155–3168. https://doi.org/10.1021/ci3003649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105(28):6474–6487. https://doi.org/10.1021/jp003919d

    Article  CAS  Google Scholar 

  42. Harder E, Damm W, Maple J, Wu C, Reboul M, Xiang JY, Wang L, Lupyan D, Dahlgren MK, Knight JL, Kaus JW, Cerutti DS, Krilov G, Jorgensen WL, Abel R, Friesner RA (2016) OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J Chem Theory Comput 12(1):281–296. https://doi.org/10.1021/acs.jctc.5b00864

    Article  CAS  PubMed  Google Scholar 

  43. Mobley DL, Amezcua M, Ponder J, Khalak Y, Yigitkan Eken E, Almeida N, Isaacs L, Gibb B, Kellett K, Serrilon D (2020) The SAMPL7 host-guest challenge virtual workshop. Zenodo. https://doi.org/10.5281/zenodo.3674155

    Article  Google Scholar 

  44. Saric D, Kohns M, Vrabec J (2020) Dielectric constant and density of aqueous alkali halide solutions by molecular dynamics: a force field assessment. J Chem Phys 152(16):164502. https://doi.org/10.1063/1.5144991

    Article  CAS  PubMed  Google Scholar 

  45. Vega C (2015) Water: one molecule, two surfaces. One mistake. Mol Phys 113(9–10):1145–1163. https://doi.org/10.1080/00268976.2015.1005191

    Article  CAS  Google Scholar 

  46. González MA (2011) Force fields and molecular dynamics simulations. JDN 12:169–200. https://doi.org/10.1051/sfn/201112009

    Article  Google Scholar 

  47. Guillot B (2002) A reappraisal of what we have learnt during three decades of computer simulations on water. J Mol Liq 101(1):219–260. https://doi.org/10.1016/S0167-7322(02)00094-6

    Article  CAS  Google Scholar 

  48. Henriksen NM, Gilson MK (2017) Evaluating force field performance in thermodynamic calculations of cyclodextrin host-guest binding: water models, partial charges, and host force field parameters. J Chem Theory Comput 13(9):4253–4269. https://doi.org/10.1021/acs.jctc.7b00359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yin J, Henriksen NM, Muddana HS, Gilson MK (2018) Bind3P: optimization of a water model based on host-guest binding data. J Chem Theory Comput 14(7):3621–3632. https://doi.org/10.1021/acs.jctc.8b00318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Warshel A (1978) Energetics of enzyme catalysis. Proc Natl Acad Sci USA 75(11):5250–5254. https://doi.org/10.1073/pnas.75.11.5250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Howard AE, Singh UC, Billeter M, Kollman PA (1988) Many-body potential for molecular interactions. J Am Chem Soc 110(21):6984–6991. https://doi.org/10.1021/ja00229a009

    Article  CAS  Google Scholar 

  52. Humphreys DD, Friesner RA, Berne BJ (1995) Simulated annealing of a protein in a continuum solvent by multiple-time-step molecular dynamics. J Phys Chem 99(26):10674–10685. https://doi.org/10.1021/j100026a035

    Article  CAS  Google Scholar 

  53. Grossfield A, Ren P, Ponder JW (2003) Ion solvation thermodynamics from simulation with a polarizable force field. J Am Chem Soc 125(50):15671–15682. https://doi.org/10.1021/ja037005r

    Article  CAS  PubMed  Google Scholar 

  54. Gibb CLD, Gibb BC (2011) Anion binding to hydrophobic concavity is central to the salting-in effects of Hofmeister chaotropes. J Am Chem Soc 133(19):7344–7347. https://doi.org/10.1021/ja202308n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Thormann E (2012) On understanding of the Hofmeister effect: how addition of salt alters the stability of temperature responsive polymers in aqueous solutions. RSC Adv. https://doi.org/10.1039/c2ra20164j

    Article  Google Scholar 

  56. Gao K, Yin J, Henriksen NM, Fenley AT, Gilson MK (2015) Binding enthalpy calculations for a neutral host-guest pair yield widely divergent salt effects across water models. J Chem Theory Comput 11(10):4555–4564. https://doi.org/10.1021/acs.jctc.5b00676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Carnegie RS, Gibb CLD, Gibb BC (2014) Anion complexation and the Hofmeister effect. Angew Chem 126(43):11682–11684. https://doi.org/10.1002/ange.201405796

    Article  Google Scholar 

  58. Gibb CLD, Gibb BC (2004) Well-defined, organic nanoenvironments in water: the hydrophobic effect drives a capsular assembly. J Am Chem Soc 126(37):11408–11409. https://doi.org/10.1021/ja0475611

    Article  CAS  PubMed  Google Scholar 

  59. Saltzman A, Tang D, Gibb BC, Ashbaugh HS (2020) Emergence of non-monotonic deep cavity cavitand assembly with increasing portal methylation. Mol Syst Des Eng 5(3):656–665. https://doi.org/10.1039/C9ME00076C

    Article  CAS  Google Scholar 

  60. Brown A (2009) Analysis of cooperativity by isothermal titration calorimetry. Int J Mol Sci 10(8):3457–3477. https://doi.org/10.3390/ijms10083457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ma YL, Ke H, Valkonen A, Rissanen K, Jiang W (2018) Achieving strong positive cooperativity through activating weak non-covalent interactions. Angew Chem Int Ed 57(3):709–713. https://doi.org/10.1002/anie.201711077

    Article  CAS  Google Scholar 

  62. Ndendjio SZ, Liu W, Yvanez N, Meng Z, Zavalij PY, Isaacs L (2019) Triptycene walled glycoluril trimer: synthesis and recognition properties. N J Chem 44(2):338–345. https://doi.org/10.1039/C9NJ05336K

    Article  Google Scholar 

  63. Suating P, Nguyen TT, Ernst EN, Wang Y, Jordan HJ, Gibb DCL, Ashbaugh SH, Gibb CB (2020) Proximal charge effects on guest binding to a non-polar pocket. Chem Sci 11(14):3656–3663. https://doi.org/10.1039/C9SC06268H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kellett K, Slochower D, Schauperl M, Duggan BM, Gilson M (2020) Experimental characterization of the association of nine novel cyclodextrin derivatives with two guest compounds. ChemRxiv. https://doi.org/10.26434/chemrxiv.12663065.v1

    Article  Google Scholar 

  65. Lee J, Tofoleanu F, Pickard FC, König G, Huang J, Damjanović A, Baek M, Seok C, Brooks BR (2017) Absolute binding free energy calculations of CBClip host-guest systems in the SAMPL5 Blind Challenge. J Comput Aided Mol Des 31(1):71–85. https://doi.org/10.1007/s10822-016-9968-2

    Article  CAS  PubMed  Google Scholar 

  66. Ma D, Zavalij PY, Isaacs L (2010) Acyclic cucurbit[n]uril congeners are high affinity hosts. J Org Chem 75(14):4786–4795. https://doi.org/10.1021/jo100760g

    Article  CAS  PubMed  Google Scholar 

  67. Biedermann F, Rauwald U, Cziferszky M, Williams KA, Gann LD, Guo BY, Urbach AR, Bielawski CW, Scherman OA (2010) Benzobis(imidazolium)-cucurbit[8]uril complexes for binding and sensing aromatic compounds in aqueous solution. Chem Eur J 16(46):13716–13722. https://doi.org/10.1002/chem.201002274

    Article  CAS  PubMed  Google Scholar 

  68. Gallicchio E, Levy RM (2012) Prediction of SAMPL3 host-guest affinities with the binding energy distribution analysis method (BEDAM). J Comput Aided Mol Des 26(5):505–516. https://doi.org/10.1007/s10822-012-9552-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Naïm M, Bhat S, Rankin KN, Dennis S, Chowdhury SF, Siddiqi I, Drabik P, Sulea T, Bayly CI, Jakalian A, Purisima EO (2007) Solvated interaction energy (SIE) for scoring protein–ligand binding affinities. 1. Exploring the parameter space. J Chem Inf Model 47(1):122–133. https://doi.org/10.1021/ci600406v

    Article  CAS  PubMed  Google Scholar 

  70. Yin J, Henriksen NM, Slochower DR, Shirts MR, Chiu MW, Mobley DL, Gilson MK (2017) Overview of the SAMPL5 Host-Guest Challenge: are we doing better? J Comput Aided Mol Des 31(1):1–19. https://doi.org/10.1007/s10822-016-9974-4

    Article  CAS  PubMed  Google Scholar 

  71. Liu W, Lu X, Xue W, Samanta SK, Zavalij PY, Meng Z, Isaacs L (2018) Hybrid molecular container based on glycoluril and triptycene: synthesis, binding properties, and triggered release. Chem Eur J 24(53):14101–14110. https://doi.org/10.1002/chem.201802981

    Article  CAS  PubMed  Google Scholar 

  72. Ndendjio SAZ, Isaacs L (2019) Molecular recognition properties of acyclic cucurbiturils toward amino acids, peptides, and a protein. Supramol Chem 31(7):432–441. https://doi.org/10.1080/10610278.2019.1619737

    Article  CAS  Google Scholar 

  73. Biedermann F, Uzunova VD, Scherman OA, Nau WM, De Simone A (2012) Release of high-energy water as an essential driving force for the high-affinity binding of cucurbit[n]urils. J Am Chem Soc 134(37):15318–15323. https://doi.org/10.1021/ja303309e

    Article  CAS  PubMed  Google Scholar 

  74. Monroe JI, Shirts MR (2014) Converging free energies of binding in cucurbit[7]uril and octa-acid host-guest systems from SAMPL4 using expanded ensemble simulations. J Comput Aided Mol Des 28(4):401–415. https://doi.org/10.1007/s10822-014-9716-4

    Article  CAS  PubMed  Google Scholar 

  75. Liu W, Lu X, Meng Z, Isaacs L (2018) A glycoluril dimer-triptycene hybrid receptor: synthesis and molecular recognition properties. Org Biomol Chem 16(35):6499–6506. https://doi.org/10.1039/C8OB01575A

    Article  CAS  PubMed  Google Scholar 

  76. Barnett JW, Sullivan MR, Long JA, Tang D, Nguyen T, Ben-Amotz D, Gibb BC, Ashbaugh HS (2020) Spontaneous drying of non-polar deep-cavity cavitand pockets in aqueous solution. Nat Chem. https://doi.org/10.1038/s41557-020-0458-8

    Article  PubMed  PubMed Central  Google Scholar 

  77. Gibb CLD, Gibb BC (2009) Guests of differing polarities provide insight into structural requirements for templates of water-soluble nano-capsules. Tetrahedron 65(35):7240–7248. https://doi.org/10.1016/j.tet.2009.01.106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gibb CLD, Gibb BC (2014) Binding of cyclic carboxylates to octa-acid deep-cavity cavitand. J Comput Aided Mol Des 28(4):319–325. https://doi.org/10.1007/s10822-013-9690-2

    Article  CAS  PubMed  Google Scholar 

  79. Ewell J, Gibb BC, Rick SW (2008) Water inside a hydrophobic cavitand molecule. J Phys Chem B 112(33):10272–10279. https://doi.org/10.1021/jp804429n

    Article  CAS  PubMed  Google Scholar 

  80. Kellett K, Kantonen SA, Duggan BM, Gilson MK (2018) Toward expanded diversity of host-guest interactions via synthesis and characterization of cyclodextrin derivatives. J Solut Chem 47(10):1597–1608. https://doi.org/10.1007/s10953-018-0769-1

    Article  CAS  Google Scholar 

  81. Slochower DR, Henriksen NM, Wang LP, Chodera JD, Mobley DL, Gilson MK (2019) Binding thermodynamics of host–guest systems with SMIRNOFF99Frosst 1.0.5 from the Open Force Field Initiative. J Chem Theory Comput. 15(11):6225–6242. https://doi.org/10.1021/acs.jctc.9b00748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Carrazana J, Jover A, Meijide F, Soto VH, Vázquez Tato J (2005) Complexation of adamantyl compounds by \(\beta \)-cyclodextrin and monoamino derivatives. J Phys Chem B 109(19):9719–9726. https://doi.org/10.1021/jp0505781

    Article  CAS  PubMed  Google Scholar 

  83. Rizzi A, Grinaway P, Parton D, Shirts M, Wang K, Eastman P, Friedrichs M, Pande V, Branson K, Mobley D, Chodera J (2020) YANK: a GPU-accelerated platform for alchemical free energy calculations

  84. Wang K, Chodera JD, Yang Y, Shirts MR (2013) Identifying ligand binding sites and poses using GPU-accelerated Hamiltonian replica exchange molecular dynamics. J Comput Aided Mol Des 27(12):989–1007. https://doi.org/10.1007/s10822-013-9689-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Friedrichs MS, Eastman P, Vaidyanathan V, Houston M, Legrand S, Beberg AL, Ensign DL, Bruns CM, Pande VS (2009) Accelerating molecular dynamic simulation on graphics processing units. J Comput Chem 30(6):864–872. https://doi.org/10.1002/jcc.21209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Eastman P, Pande V (2010) OpenMM: a hardware-independent framework for molecular simulations. Comput Sci Eng 12(4):34–39. https://doi.org/10.1109/MCSE.2010.27

    Article  CAS  PubMed Central  Google Scholar 

  87. Eastman P, Pande VS (2010) Constant constraint matrix approximation: a robust, parallelizable constraint method for molecular simulations. J Chem Theory Comput 6(2):434–437. https://doi.org/10.1021/ct900463w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Eastman P, Pande VS (2010) Efficient nonbonded interactions for molecular dynamics on a graphics processing unit. J Comput Chem 31(6):1268–1272. https://doi.org/10.1002/jcc.21413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Eastman P, Friedrichs MS, Chodera JD, Radmer RJ, Bruns CM, Ku JP, Beauchamp KA, Lane TJ, Wang LP, Shukla D, Tye T, Houston M, Stich T, Klein C, Shirts MR, Pande VS (2013) OpenMM 4: a reusable, extensible, hardware independent library for high performance molecular simulation. J Chem Theory Comput 9(1):461–469. https://doi.org/10.1021/ct300857j

    Article  CAS  PubMed  Google Scholar 

  90. Shirts MR, Chodera JD (2008) Statistically optimal analysis of samples from multiple equilibrium states. J Chem Phys 129(12):124105. https://doi.org/10.1063/1.2978177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Khalak Y, Tresadern G, de Groot BL, Gapsys V (2020) Non-equilibrium approach for binding free energies in cyclodextrins in SAMPL7: force fields and software. J Comput Aided Mol Des. https://doi.org/10.1007/s10822-020-00359-1

    Article  PubMed  PubMed Central  Google Scholar 

  93. Procacci P, Guarnieri G (2020) SAMPL7 blind predictions using nonequilibrium alchemical approaches. J Comput Aided Mol Des. https://doi.org/10.1007/s10822-020-00365-3

    Article  PubMed  Google Scholar 

  94. Shi Y, Laury ML, Wang Z, Ponder JW (2020) AMOEBA binding free energies for the SAMPL7 TrimerTrip Host-Guest Challenge. J Comput Aided Mol Des. https://doi.org/10.1007/s10822-020-00358-2

    Article  PubMed  PubMed Central  Google Scholar 

  95. Eken Y, Almeida NMS, Wang C, Wilson AK (2020) SAMPL7: host-guest binding prediction by molecular dynamics and quantum mechanics. J Comput Aided Mol Des. https://doi.org/10.1007/s10822-020-00357-3

    Article  PubMed  Google Scholar 

  96. Serillon D, Barril X (in press) Testing automatic methods to predict free binding energy of host–guest complexes in SAMPL7 Challenge. J Comput Aided Mol Des

  97. Rizzi A, Murkli S, McNeill JN, Yao W, Sullivan M, Gilson MK, Chiu MW, Isaacs L, Gibb BC, Mobley DL, Chodera JD (2018) Overview of the SAMPL6 host-guest binding affinity prediction challenge. J Comput Aided Mol Des 32(10):937–963. https://doi.org/10.1007/s10822-018-0170-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Procacci P (2019) Precision and computational efficiency of nonequilibrium alchemical methods for computing free energies of solvation. II. Unidirectional estimates. II. Unidirectional Estimates. J Chem Phys. 151(14):144115. https://doi.org/10.1063/1.5120616

    Article  CAS  PubMed  Google Scholar 

  99. Izadi S, Onufriev AV (2016) Accuracy limit of rigid 3-point water models. J Chem Phys 10(1063/1):4960175. https://doi.org/10.1063/1.4960175

    Article  CAS  Google Scholar 

  100. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113(18):6378–6396. https://doi.org/10.1021/jp810292n

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

MA and DLM gratefully acknowledge support from NIH Grant R01GM124270 supporting the SAMPL Blind Challenges. We appreciate the laboratories of Michael K. Gilson (UCSD), Lyle Isaacs (Maryland) and Bruce Gibb (Tulane) for providing experimental data for the challenge. We are also grateful to OpenEye Scientific for providing a free academic software license for use in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Mobley.

Ethics declarations

Disclaimers

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Conflict of interest

DLM is a Member of the Scientific Advisory Board of OpenEye Scientific Software, and DLM is an Open Science Fellow with Silicon Therapeutics.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 347 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amezcua, M., El Khoury, L. & Mobley, D.L. SAMPL7 Host–Guest Challenge Overview: assessing the reliability of polarizable and non-polarizable methods for binding free energy calculations. J Comput Aided Mol Des 35, 1–35 (2021). https://doi.org/10.1007/s10822-020-00363-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-020-00363-5

Keywords

Navigation