Skip to main content
Log in

Experimental characterization of the association of β-cyclodextrin and eight novel cyclodextrin derivatives with two guest compounds

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

We investigate the binding of native β-cyclodextrin (β-CD) and eight novel β-CD derivatives with two different guest compounds, using isothermal calorimetry and 2D NOESY NMR. In all cases, the stoichiometry is 1:1 and binding is exothermic. Overall, modifications at the 3′ position of β-CD, which is at the secondary face, weaken binding by several kJ/mol relative to native β-CD, while modifications at the 6′ position (primary face) maintain or somewhat reduce the binding affinity. The variations in binding enthalpy are larger than the variations in binding free energy, so entropy–enthalpy compensation is observed. Characterization of the bound conformations with NOESY NMR shows that the polar groups of the guests may be situated at either face, depending on the host molecule, and, in some cases, both orientations are populated. The present results were used in the SAMPL7 blinded prediction challenge whose results are detailed in the same special issue of JCAMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data and raw data files for ITC provided in supplementary information.

Code availability

https://github.com/GilsonLabUCSD/itc_fit (commit ID e9eabb0).

References

  1. Oostenbrink C (2009) Efficient free energy calculations on small molecule host-guest systems: a combined linear interaction energy/one-step perturbation approach. J Comput Chem 30(2):212–221

    Article  CAS  Google Scholar 

  2. Fenley AT, Henriksen NM, Muddana HS, Gilson MK (2014) Bridging calorimetry and simulation through precise calculations of cucurbituril-guest binding enthalpies. J Chem Theory Comput 10(9):4069–4078

    Article  CAS  Google Scholar 

  3. Muddana HS, Fenley AT, Mobley DL, Gilson MK (2014) The SAMPL4 host-guest blind prediction challenge: an overview. J Comput Aided Mol Des 28(4):305–317

    Article  CAS  Google Scholar 

  4. Bell DR et al (2016) Calculating binding free energies of host-guest systems using AMOEBA polarizable force field. Phys Chem Chem Phys 18(44):30261–30269

    Article  CAS  Google Scholar 

  5. Mobley DL, Gilson MK (2017) Predicting binding free energies: frontiers and benchmarks. Annu Rev Biophys 46(1):531–558

    Article  CAS  Google Scholar 

  6. Gilson MK, Given JA, Bush BL, McCammon JA (1997) The statistical-thermodynamic basis for computation of binding affinities: a criticalreview. Biophys J 72:1047–1069

    Article  CAS  Google Scholar 

  7. Houk KN, Leach AG, Kim SP, Zhang X (2003) Thermodynamic organic complexes binding affinities of host–guest, protein–ligand, and protein–transition-state complexes angewandte. Angew Chem Int Ed 42:4872–4897

    Article  CAS  Google Scholar 

  8. Alvira E (2010) Capacity of small molecules to form b-cyclodextrin inclusion complexes. Supramol Chem 22(3):156–162

    Article  CAS  Google Scholar 

  9. Rekharsky MV, Mayhew MP, Goldberg RN, Ross PD, Yamashoji Y, Inoue Y (1997) Thermodynamic and nuclear magnetic resonance study of the reactions of alpha-and beta-cyclodextrin with acids, aliphatic amines, and cyclic alcohols. J Phys Chem B 101(1):87–100

    Article  CAS  Google Scholar 

  10. Rekharsky MV, Mayhew MP, Goldberg RN, Ross PD, Yamashoji Y, Inoue Y (1997) Thermodynamic and nuclear magnetic resonance study of the reactions of α- and β-cyclodextrin with acids, aliphatic amines, and cyclic alcohols. J Phys Chem B 101(1):87–100

    Article  CAS  Google Scholar 

  11. Rekharsky M, Inoue Y (2000) Chiral recognition thermodynamics of beta-cyclodextrin: the thermodynamic origin of enantioselectivity and the enthalpy-entropy compensation effect. J Am Chem Soc 122(18):4418–4435

    Article  CAS  Google Scholar 

  12. Rekharsky MV, Inoue Y (1998) Complexation thermodynamics of cyclodextrins. Chem Rev 98(5):1875–1917

    Article  CAS  Google Scholar 

  13. Kellett K, Kantonen SA, Duggan BM, Gilson MK (2018) Toward expanded diversity of host-guest interactions via synthesis and characterization of cyclodextrin derivatives. J Solut Chem 47:597–1608

    Article  Google Scholar 

  14. Rekharsky MV, Inoue Y (2002) Solvent and guest isotope effects on complexation thermodynamics of alpha-, beta-, and 6-amino-6-deoxy-beta-cyclodextrins. J Am Chem Soc 124(41):12361–12371

    Article  CAS  Google Scholar 

  15. Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L (2005) The Cucurbit[n]uril Family. Angew Chem Int Ed 44:4844–4870

    Article  CAS  Google Scholar 

  16. Hillyer MB, Gibb CLD, Sokkalingam P, Jordan JH, Ioup SE, Gibb BC (2016) Synthesis of water-soluble deep-cavity cavitands. Org Lett 18(16):4048–4051

    Article  CAS  Google Scholar 

  17. Hardouin-Lerouge M, Hudhomme P, Salle M (2011) Molecular clips and tweezers hosting neutral guests. Chem Soc Rev 40:30–43

    Article  CAS  Google Scholar 

  18. Klarner FG, Kahlert B (2003) Molecular tweezers and clips as synthetic receptors. Molecular recognition and dynamics in receptor–substrate complexes. Acc Chem Res 36(12):919–932

    Article  Google Scholar 

  19. Kellett K, Duggan BM, Gilson M (2018) Facile synthesis of a diverse library of mono-3-substituted β -cyclodextrin analogues. Supramol Chem 31(4):251–259

    Article  Google Scholar 

  20. Kantonen SA, Henriksen NM, Gilson MK (2017) Evaluation and minimization of uncertainty in ITC binding measurements: heat error, concentration error, saturation, and stoichiometry. Biochim Biophys Acta - Gen Subj 1861(2):485–498

    Article  CAS  Google Scholar 

  21. Wiseman T, Williston S, Brandts JF, Lin LN (1989) Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem 179(1):131–137

    Article  CAS  Google Scholar 

  22. Rodrigo AC, Laurini E, Vieira MP, Pricl S, Smith DK (2017) Effect of buffer at nanoscale molecular recognition interfaces: electrostatic binding of biological polyanions. Chem Commun 53(84):11580–11583

    Article  CAS  Google Scholar 

  23. Carrazana J, Jover A, Meijide F, Soto VH, Tato JV (2005) Complexation of adamantyl compounds by beta-cyclodextrin and monoaminoderivatives. J Phys Chem B 109(19):9719–9726

    CAS  PubMed  Google Scholar 

  24. Pedretti A, Villa L, Vistoli G (2002) VEGA: a versatile program to convert, handle and visualize molecular structure on windows-based PCs. J Mol Graph 21:47–49

    Article  CAS  Google Scholar 

  25. Lai B, Oostenbrink C (2012) Binding free energy, energy and entropy calculations using simple model systems. Theor Chem Acc 131:1272

    Article  Google Scholar 

  26. Henriksen NM, Fenley AT, Gilson MK (2015) Computational calorimetry : high-precision calculation of host–guest binding thermodynamics. J Chem Theory Comput 11:4377–4394

    Article  CAS  Google Scholar 

Download references

Funding

MKG acknowledges funding from National Institute of General Medical Sciences (GM061300). The contents of this paper are solely the responsibility of the authors and do not necessarily represent the official views of the funders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Gilson.

Ethics declarations

Conflict of interest

MKG has an equity interest in and is a cofounder and scientific advisor of VeraChem LLC.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 kb)

SAMPL7_Kellett_Gilson_SMILES.xlsx

Supplementary file2 (XLSX 9 kb)

SAMPL7_Kellett_Gilson_SAMPL_ITC_complexes.xlsx

Supplementary file3 (XLSX 16 kb)

SAMPL7_Kellett_Gilson_ITC_raw_data.zip

Supplementary file4 (ZIP 18 kb)

Supplementary file5 (DOCX 6 kb)

SAMPL7_Kellett_Gilson_enthalpograms_SAMPL.pdf

Supplementary file6 (PDF 4041 kb)

SAMPL7_Kellett_Gilson_NMR-R-Rimantadine.pdf

Supplementary file7 (PDF 500 kb)

SAMPL7_Kellett_Gilson_NMR-trans-methyl-cyclohexanol.pdf

Supplementary file8 (PDF 471 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kellett, K., Slochower, D.R., Schauperl, M. et al. Experimental characterization of the association of β-cyclodextrin and eight novel cyclodextrin derivatives with two guest compounds. J Comput Aided Mol Des 35, 95–104 (2021). https://doi.org/10.1007/s10822-020-00350-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-020-00350-w

Keywords

Navigation