Skip to main content

ProIn-Fuse: improved and robust prediction of proinflammatory peptides by fusing of multiple feature representations


A proinflammatory peptide (PIP) is a type of signaling molecules that are secreted from immune cells, which contributes to the first line of defense against invading pathogens. Numerous experiments have shown that PIPs play an important role in human physiology such as vaccines and immunotherapeutic drugs. Considering high-throughput laboratory methods that are time consuming and costly, effective computational methods are great demand to timely and accurately identify PIPs. Thus, in this study, we proposed a computational model in conjunction with a multiple feature representation, called ProIn-Fuse, to improve the performance of PIPs identification. Specifically, a feature representation learning model was utilized to generate the probabilistic scores by using the random forest models employing eight sequence encoding schemes. Finally, the ProIn-Fuse was constructed by linearly combining the resultant eight probabilistic scores. Evaluated through independent test, the ProIn-Fuse yielded an accuracy of 0.746, which was 10% higher than those obtained by the state-of-the-art PIP predictors. The proposed ProIn-Fuse can facilitate faster and broader applications of PIPs in drug design and development. The web server, datasets and online instruction are freely accessible at

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Zhang JM, An J (2007) Cytokines, inflammation, and pain. Int Anesthesiol Clin 45(2):27–37

    CAS  Google Scholar 

  2. 2.

    Watkins LR, Maier SF, Goehler LE (1995) Immune activation: the role of pro-inflammatory cytokines in inflammation, illness responses and pathological pain states. Pain 63(3):289–302

    CAS  Google Scholar 

  3. 3.

    Scarpioni R, Ricardi M, Albertazzi V (2016) Secondary amyloidosis in autoinflammatory diseases and the role of inflammation in renal damage. World j Nephrol 5(1):66–75

    Google Scholar 

  4. 4.

    Pinho-Ribeiro FA, Hohmann MS, Borghi SM, Zarpelon AC, Guazelli CF, Manchope MF, Casagrande R, Verri WA Jr (2015) Protective effects of the flavonoid hesperidin methyl chalcone in inflammation and pain in mice: role of TRPV1, oxidative stress, cytokines and NF-kappaB. Chem Biol Interact 228:88–99

    CAS  Google Scholar 

  5. 5.

    Cavaillon JM (2001) Pro- versus anti-inflammatory cytokines: myth or reality. Cell Mol Biol (Noisy-le-grand) 47(4):695–702

    CAS  Google Scholar 

  6. 6.

    Shi J, Liu Y, Wang Y, Zhang J, Zhao S, Yang G (2015) Biological and immunotoxicity evaluation of antimicrobial peptide-loaded coatings using a layer-by-layer process on titanium. Sci Rep 5:16336

    CAS  Google Scholar 

  7. 7.

    Gustafsson A, Sigel S, Ljunggren L (2010) The antimicrobial peptide LL37 and its truncated derivatives potentiates proinflammatory cytokine induction by lipoteichoic acid in whole blood. Scand J Clin Lab Invest 70(7):512–518

    CAS  Google Scholar 

  8. 8.

    Gordon YJ, Romanowski EG, McDermott AM (2005) A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr Eye Res 30(7):505–515

    CAS  Google Scholar 

  9. 9.

    Hsu HY, Chang MH, Ni YH, Huang SF (2001) Cytomegalovirus infection and proinflammatory cytokine activation modulate the surface immune determinant expression and immunogenicity of cultured murine extrahepatic bile duct epithelial cells. Clin Exp Immunol 126(1):84–91

    CAS  Google Scholar 

  10. 10.

    Desmet VJ (1987) Cholangiopathies: past, present, and future. Semin Liver Dis 7(2):67–76

    CAS  Google Scholar 

  11. 11.

    Mukhopadhyay S, Mondal SA, Kumar M, Dutta D (2014) Proinflammatory and antiinflammatory attributes of fetuin-a: a novel hepatokine modulating cardiovascular and glycemic outcomes in metabolic syndrome. Endocr Pract 20(12):1345–1351

    Google Scholar 

  12. 12.

    Zhao X, Koshiba T, Fujimoto Y, Pirenne J, Yoshizawa A, Ito T, Kamei H, Jobara K, Ogawa K, Uryuhara K et al (2005) Proinflammatory and antiinflammatory cytokine production during ischemia-reperfusion injury in a case of identical twin living donor liver transplantation using no immunosuppression. Transpl Proc 37(1):392–394

    CAS  Google Scholar 

  13. 13.

    Bellner L, Thoren F, Nygren E, Liljeqvist JA, Karlsson A, Eriksson K (2005) A proinflammatory peptide from herpes simplex virus type 2 glycoprotein G affects neutrophil, monocyte, and NK cell functions. J Immunol 174(4):2235–2241

    CAS  Google Scholar 

  14. 14.

    Bylund J, Christophe T, Boulay F, Nystrom T, Karlsson A, Dahlgren C (2001) Proinflammatory activity of a cecropin-like antibacterial peptide from Helicobacter pylori. Antimicrob Agents Chemother 45(6):1700–1704

    CAS  Google Scholar 

  15. 15.

    Vasic D, Walcher D (2012) Proinflammatory effects of C-Peptide in different tissues. Int J Inflam 2012:932725

    Google Scholar 

  16. 16.

    Manavalan B, Shin TH, Kim MO, Lee G (2018) PIP-EL: a new ensemble learning method for improved proinflammatory peptide predictions. Front Immunol 9:1783

    Google Scholar 

  17. 17.

    Gupta S, Madhu MK, Sharma AK, Sharma VK (2016) ProInflam: a webserver for the prediction of proinflammatory antigenicity of peptides and proteins. J Transl Med 14(1):178

    Google Scholar 

  18. 18.

    Fleri W, Vaughan K, Salimi N, Vita R, Peters B, Sette A (2017) The Immune Epitope Database: How Data Are Entered and Retrieved. J Immunol Res 2017:5974574

    Google Scholar 

  19. 19.

    Vita R, Overton JA, Greenbaum JA, Ponomarenko J, Clark JD, Cantrell JR, Wheeler DK, Gabbard JL, Hix D, Sette A et al (2015) The immune epitope database (IEDB) 3.0. Nucleic Acids Res 43:D405–412

    CAS  Google Scholar 

  20. 20.

    Huang Y, Niu B, Gao Y, Fu L, Li W (2010) CD-HIT suite: a web server for clustering and comparing biological sequences. Bioinformatics 26(5):680–682

    CAS  Google Scholar 

  21. 21.

    Hasan MM, Schaduangrat N, Basith S, Lee G, Shoombuatong W, Manavalan B (2020) HLPpred-fuse: improved and robust prediction of hemolytic peptide and its activity by fusing multiple feature representation. Bioinformatics.

    Article  Google Scholar 

  22. 22.

    Hasan MM, Manavalan B, Shoombuatong W, Khatun MS, Kurata H (2010) I6mA-fuse: improved and robust prediction of DNA 6 mA sites in the rosaceae genome by fusing multiple feature representation. Plant Mol Biol.

    Article  Google Scholar 

  23. 23.

    Hasan MM, Manavalan B, Khatun MS, Kurata H (2019) i4mC-ROSE, a bioinformatics tool for the identification of DNA N4-methylcytosine sites in the rosaceae genome. Int J Biol Macromol.

    Article  Google Scholar 

  24. 24.

    Hasan MM, Khatun MS, Mollah MNH, Yong C, Guo D (2017) A systematic identification of species-specific protein succinylation sites using joint element features information. Int J Nanomed 12:6303

    CAS  Google Scholar 

  25. 25.

    Chen K, Jiang Y, Du L, Kurgan L (2009) Prediction of integral membrane protein type by collocated hydrophobic amino acid pairs. J Comput Chem 30(1):163–172

    Google Scholar 

  26. 26.

    Khatun MS, Hasan MM, Kurata H (2019) PreAIP: computational prediction of anti-inflammatory peptides by integrating multiple complementary features. Front Genet 10:129

    CAS  Google Scholar 

  27. 27.

    Hasan MM, Khatun MS, Kurata H (2019) Large-scale assessment of bioinformatics tools for lysine succinylation sites. Cells 8(2):95

    CAS  Google Scholar 

  28. 28.

    Charoenkwan P, Yana J, Schaduangrat N, Nantasenamat C, Hasan MM, Shoombuatong W (2020) iBitter-SCM: identification and characterization of bitter peptides using a scoring card method with propensity scores of dipeptides. Genomics.

    Article  Google Scholar 

  29. 29.

    Rashid MM, Shatabda S, Hasan MM, Kurata H (2020) Recent development of machine learning methods in microbial phosphorylation sites. Curr Genomics 21(3):194–203

    CAS  Google Scholar 

  30. 30.

    Hasan MM, Khatun MS, Mollah MNH, Yong C, Dianjing G (2018) NTyroSite: computational identification of protein nitrotyrosine sites using sequence evolutionary features. Molecules 23(7):1667

    Google Scholar 

  31. 31.

    Kawashima S, Pokarowski P, Pokarowska M, Kolinski A, Katayama T, Kanehisa M (2008) AAindex: amino acid index database, progress report 2008. Nucleic Acids Res 36:D202–205

    CAS  Google Scholar 

  32. 32.

    Yang Y, Heffernan R, Paliwal K, Lyons J, Dehzangi A, Sharma A, Wang J, Sattar A, Zhou Y (2017) SPIDER2: a package to predict secondary structure, accessible surface area, and main-chain torsional angles by deep neural networks. Methods Mol Biol 1484:55–63

    CAS  Google Scholar 

  33. 33.

    Hasan MM, Basith S, Khatun MS, Lee G, Manavalan B, Kurata H (2020) Meta-i6mA: an interspecies predictor for identifying DNA N6-methyladenine sites of plant genomes by exploiting informative features in an integrative machine-learning framework. Brief Bioinformatics.

    Article  Google Scholar 

  34. 34.

    Hasan MM, Kurata H (2018) GPSuc: global prediction of generic and species-specific succinylation sites by aggregating multiple sequence features. PLoS ONE 13(10):e0200283

    Google Scholar 

  35. 35.

    Mosharaf MP, Hassan MM, Ahmed FF, Khatun MS, Moni MA, Mollah MNH (2020) Computational prediction of protein ubiquitination sites mapping on arabidopsis thaliana. Comput Biol Chem 85:107238

    CAS  Google Scholar 

  36. 36.

    Maclin R, Opitz D (1999) Popular ensemble methods: an empirical study. J Artif Intell Res.

    Article  Google Scholar 

  37. 37.

    Khatun MS, Shoombuatong W, Hasan MM, Kurata H (2020) Evolution of sequence-based bioinformatics tools for protein-protein interaction prediction. Curr Genom.

    Article  Google Scholar 

  38. 38.

    Charoenkwan P, Nantasenamat C, Hasan MM, Shoombuatong W (2020) iTTCA-Hybrid: improved and robust identification of tumor T cell antigens by utilizing hybrid feature representation. Anal Biochem 599:113747

    CAS  Google Scholar 

  39. 39.

    Khatun S, Hasan M, Kurata H (2019) Efficient computational model for identification of antitubercular peptides by integrating amino acid patterns and properties. FEBS Lett.

    Article  Google Scholar 

  40. 40.

    Hasan MM, Rashid MM, Khatun MS, Kurata H (2019) Computational identification of microbial phosphorylation sites by the enhanced characteristics of sequence information. Sci Rep 9(1):8258

    Google Scholar 

  41. 41.

    Manavalan B, Shin TH, Lee D, Lee G (2020) Evolution of machine learning algorithms in the prediction and design of anticancer peptides. Curr Protein Pept Sci.

    Article  Google Scholar 

  42. 42.

    Charoenkwan P, Shoombuatong W, Lee HC, Chaijaruwanich J, Huang HL, Ho SY (2013) SCMCRYS: predicting protein crystallization using an ensemble scoring card method with estimating propensity scores of P-collocated amino acid pairs. PLoS ONE 8(9):e72368

    CAS  Google Scholar 

  43. 43.

    Basith S, Manavalan B, Hwan Shin T, Lee G (2020) Machine intelligence in peptide therapeutics: a next-generation tool for rapid disease screening. Med Res Rev.

    Article  Google Scholar 

  44. 44.

    Manavalan B, Basith S, Shin TH, Wei L, Lee G (2019) mAHTPred: a sequence-based meta-predictor for improving the prediction of anti-hypertensive peptides using effective feature representation. Bioinformatics 35(16):2757–2765

    CAS  Google Scholar 

  45. 45.

    Hasan MM, Zhou Y, Lu X, Li J, Song J, Zhang Z (2015) Computational identification of protein pupylation sites by using profile-based composition of k-spaced amino acid pairs. PLoS ONE 10(6):e0129635

    Google Scholar 

  46. 46.

    Mathur D, Prakash S, Anand P, Kaur H, Agrawal P, Mehta A, Kumar R, Singh S, Raghava GP (2016) PEPlife: a repository of the half-life of peptides. Sci Rep 6:36617

    CAS  Google Scholar 

  47. 47.

    Hasan MM, Guo D, Kurata H (2017) Computational identification of protein S-sulfenylation sites by incorporating the multiple sequence features information. Mol BioSyst 13(12):2545–2550

    CAS  Google Scholar 

  48. 48.

    Liaw A (2002) Wiener: classification and regression by random forest. R News 2:18–22

    Google Scholar 

  49. 49.

    Su R, Hu J, Zou Q, Manavalan B, Wei L (2019) Empirical comparison and analysis of web-based cell-penetrating peptide prediction tools. Brief Bioinformatics.

    Article  Google Scholar 

  50. 50.

    Shoombuatong W, Schaduangrat N, Pratiwi R, Nantasenamat C (2019) THPep: a machine learning-based approach for predicting tumor homing peptides. Comput Biol Chem 80:441–451

    CAS  Google Scholar 

  51. 51.

    Schaduangrat N, Nantasenamat C, Prachayasittikul V, Shoombuatong W (2019) Meta-iAVP: a sequence-based meta-predictor for improving the prediction of antiviral peptides using effective feature representation. Int J Mol Sci 20(22):5743

    CAS  Google Scholar 

  52. 52.

    Win TS, Malik AA, Prachayasittikul V (2017) JE SW, nantasenamat C, shoombuatong W: hemoPred: a web server for predicting the hemolytic activity of peptides. Future Med Chem 9(3):275–291

    CAS  Google Scholar 

  53. 53.

    Gribskov M, Robinson NL (1996) Use of receiver operating characteristic (ROC) analysis to evaluate sequence matching. Comput Chem 20(1):25–33

    CAS  Google Scholar 

  54. 54.

    Centor RM (1991) Signal detectability-the use of roc curves and their analyses. Med Decis Making 11(2):102–106

    CAS  Google Scholar 

  55. 55.

    Boopathi V, Subramaniyam S, Malik A, Lee G, Manavalan B, Yang DC (2019) mACPpred: a support vector machine-based meta-predictor for identification of anticancer peptides. Int J Mol Sci 20(8):1964

    CAS  Google Scholar 

  56. 56.

    Manavalan B, Basith S, Shin TH, Wei L, Lee G (2019) Meta-4mCpred: a sequence-based meta-predictor for accurate DNA 4mC site prediction using effective feature representation. Mol Ther Nucleic Acids 16:733–744

    CAS  Google Scholar 

  57. 57.

    Manavalan B, Basith S, Shin TH, Wei L, Lee G (2019) AtbPpred: a robust sequence-based prediction of anti-tubercular peptides using extremely randomized trees. Comput Struct Biotechnol J 17:972–981

    CAS  Google Scholar 

  58. 58.

    Hasan MM, Manavalan B, Khatun MS, Kurata H (2019) Prediction of S-nitrosylation sites by integrating support vector machines and random forest. Mol Omics 15(6):451–458

    CAS  Google Scholar 

  59. 59.

    Muhammod R, Ahmed S, Farid DM, Shatabda S, Sharma A, Dehzangi A (2019) PyFeat: a python-based effective feature generation tool for DNA RNA and protein sequences. Bioinformatics 35:3831–3833

    CAS  Google Scholar 

Download references


We thank the reviewers for their great comments in helping to improve this manuscript. This work is supported by the Grant-in-Aid for JSPS Research Fellow (19F19377) from Japan Society for the Promotion of Science (JSPS), partially supported from Japan Society for the Promotion of Science by Grant-in-Aid for Scientific Research (B) (19H04208) and by the developing key technologies for discovering and manufacturing pharmaceuticals used for next-generation treatments and diagnoses both from the Ministry of Economy, Trade and Industry, Japan (METI) and from Japan Agency for Medical Research and Development (AMED).

Author information



Corresponding authors

Correspondence to Md. Mehedi Hasan or Hiroyuki Kurata.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 53 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khatun, M.S., Hasan, M.M., Shoombuatong, W. et al. ProIn-Fuse: improved and robust prediction of proinflammatory peptides by fusing of multiple feature representations. J Comput Aided Mol Des 34, 1229–1236 (2020).

Download citation


  • Proinflammatory peptide
  • Immune diseases
  • Feature encoding
  • Random forest; machine learning