Skip to main content
Log in

SAMPL7 TrimerTrip host–guest binding poses and binding affinities from spherical-coordinates-biased simulations

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Host–guest binding remains a major challenge in modern computational modelling. The newest 7th statistical assessment of the modeling of proteins and ligands (SAMPL) challenge contains a new series of host–guest systems. The TrimerTrip host binds to 16 structurally diverse guests. Previously, we have successfully employed the spherical coordinates as the collective variables coupled with the enhanced sampling technique metadynamics to enhance the sampling of the binding/unbinding event, search for possible binding poses and calculate the binding affinities in all three host–guest binding cases of the 6th SAMPL challenge. In this work, we report a retrospective study on the TrimerTrip host–guest systems by employing the same protocol to investigate the TrimerTrip host in the SAMPL7 challenge. As no binding pose is provided by the SAMPL7 host, our simulations initiate from randomly selected configurations and are proceeded long enough to obtain converged free energy estimates and search for possible binding poses. The calculated binding affinities are in good agreement with the experimental reference, and the obtained binding poses serve as a nice starting point for end-point or alchemical free energy calculations. Note that as the work is performed after the close of the SAMPL7 challenge, we do not participate in the challenge and the results are not formally submitted to the SAMPL7 challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jorgensen WL (2004) The many roles of computation in drug discovery. Science 303:1813–1818

    CAS  PubMed  Google Scholar 

  2. Steinbrecher T, Labahn A (2010) Towards accurate free energy calculations in ligand protein-binding studies. Curr Med Chem 17:767–785

    CAS  PubMed  Google Scholar 

  3. Shivakumar D, Williams J, Wu Y, Damm W, Shelley J, Sherman W (2010) Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J Chem Theory Comput 6:1509–1519

    CAS  PubMed  Google Scholar 

  4. Gelman A (1998) Meng X-L, Simulating normalizing constants: from importance sampling to bridge sampling to path sampling. Stat Sci 13:163–185

    Google Scholar 

  5. Sun Z, Yan YN, Yang M, Zhang JZ (2017) Interaction entropy for Protein-Protein binding. J Chem Phys 146:124124

    PubMed  Google Scholar 

  6. Pohorille A, Jarzynski C, Chipot C (2010) Good practices in free-energy calculations. J Phys Chem B 114:10235–10253

    CAS  PubMed  Google Scholar 

  7. Kim I, Allen TW (2012) Bennett's acceptance ratio and histogram analysis methods enhanced by umbrella sampling along a reaction coordinate in configurational space. J Chem Phys 136:164103–164103

    PubMed  Google Scholar 

  8. Shirts MR, Pande VS (2005) Comparison of efficiency and bias of free energies computed by exponential averaging, the Bennett acceptance ratio, and thermodynamic integration. J Chem Phys 122:144107–144107

    PubMed  Google Scholar 

  9. Bruckner S, Boresch S (2011) Efficiency of alchemical free energy simulations. II. Improvements for thermodynamic integration. J Comput Chem 32:1320–1333

    CAS  PubMed  Google Scholar 

  10. Kofke DA (2006) On the sampling requirements for exponential-work free-energy calculations. Mol Phys 104:3701–3708

    CAS  Google Scholar 

  11. Hummer G, Pratt LR, Garcia AE (1995) Hydration free energy of water. J Phys Chem 99:14188–14194

    CAS  Google Scholar 

  12. Hahn A, Then H (2009) Using bijective maps to improve free-energy estimates. Phys Rev E 79:011113

    CAS  Google Scholar 

  13. Sun Z, Wang X, Zhang JZH (2017) Protonation-dependent base flipping in the catalytic triad of a small RNA. Chem Phys Lett 684:239–244

    CAS  Google Scholar 

  14. Villamaina D, Trizac E (2014) Thinking outside the box: fluctuations and finite size effects. Eur J Phys 35:035011

    Google Scholar 

  15. Heidari M, Cortes-Huerto R, Kremer K, Potestio R (2018) Concurrent coupling of realistic and ideal models of liquids and solids in Hamiltonian adaptive resolution simulations. Eur Phys J E 41:64

    PubMed  Google Scholar 

  16. Román F, White J, Velasco S (1997) Fluctuations in an equilibrium hard-disk fluid: explicit size effects. J Chem Phys 107:4635–4641

    Google Scholar 

  17. Lebowitz J, Percus J (1961) Long-range correlations in a closed system with applications to nonuniform fluids. Phys Rev 122:1675

    Google Scholar 

  18. Salacuse J, Denton A, Egelstaff P (1996) Finite-size effects in molecular dynamics simulations: static structure factor and compressibility. I. Theoretical method. Phys Rev E 53:2382

    CAS  Google Scholar 

  19. Brooks BR, Brooks CL III, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    CAS  Google Scholar 

  22. And SET, Smithrud DB (2002) Carboxylates stacked over aromatic rings promote salt bridge formation in water. J Am Chem Soc 124:442

    Google Scholar 

  23. Makin OS, Atkins E, Sikorski P, Johansson J, Serpell LC (2005) Molecular basis for amyloid fibril formation and stability. Proc Natl Acad Sci USA 102:315–320

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Rani P, Biswas P (2015) Diffusion of hydration water around intrinsically disordered proteins. J Phys Chem B 119:13262–13270

    CAS  PubMed  Google Scholar 

  25. GlH Z, RB B, J M (2015) Sequence-and temperature-dependent properties of unfolded and disordered proteins from atomistic simulations. J Phys Chem B 119:14622–14630

    Google Scholar 

  26. Best RB, de Sancho D, Mittal J (2012) Residue-specific α-helix propensities from molecular simulation. Biophys J 102:1462–1467

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Makowski M, Liwo A, Scheraga HA (2017) Simple Physics-based analytical formulas for the potentials of mean force of the interaction of amino acid side chains in water. VII. Charged–hydrophobic/polar and polar–hydrophobic/polar side chains. J Phys Chem B 121:379–390

    CAS  PubMed  Google Scholar 

  28. Tobias DJ, Brooks CL III (1991) Thermodynamics and mechanism of. alpha. helix initiation in alanine and valine peptides. Biochem 30:6059–6070

    CAS  Google Scholar 

  29. Hudson PS, Woodcock HL, Boresch S (2015) Use of nonequilibrium work methods to compute free energy differences between molecular mechanical and quantum mechanical representations of molecular systems. J Phys Chem Lett 6:4850–4856

    CAS  PubMed  Google Scholar 

  30. Martínezveracoechea FJ, Escobedo FA (2008) Variance minimization of free energy estimates from optimized expanded ensembles. J Phys Chem B 112:8120–8128

    Google Scholar 

  31. Wang X, Sun Z (2018) A theoretical interpretation of variance-based convergence citeria in perturbation-based theories. ArXiv Preprint. arXiv:1803.03123

  32. Wang X, He Q, Sun Z (2019) BAR-based multi-dimensional nonequilibrium pulling for indirect construction of a QM/MM free energy landscape. Phys Chem Chem Phys 21:6672–6688

    CAS  PubMed  Google Scholar 

  33. Sun Z (2019) BAR-based multi-dimensional nonequilibrium pulling for indirect construction of QM/MM free energy landscapes: from semi-empirical to ab initio. Phys Chem Chem Phys 21:21942–21959

    CAS  PubMed  Google Scholar 

  34. Wang X, Xingzhao T, Boming D, John ZHZ, Sun Z (2019) BAR-based optimum adaptive steered MD for configurational sampling. J Comput Chem 40:1270–1289

    PubMed  Google Scholar 

  35. Kästner J (2011) Umbrella sampling. Wiley Interdisip Rev Comput Mol Sci 1:932–942

    Google Scholar 

  36. Sun Z, Wang X, Zhang JZH, He Q (2019) Sulfur-substitution-induced base flipping in the DNA duplex. Phys Chem Chem Phys 21:14923–14940

    CAS  PubMed  Google Scholar 

  37. Sun Z, Zhang JZ (2020) Thermodynamic insights of base flipping in TNA duplex: force fields, salt concentrations, and free energy simulation methods. ChemRxiv Preprint. https://doi.org/10.26434/chemrxiv.11483178.v1

    Article  Google Scholar 

  38. Fukunishi H, Watanabe O, Takada S (2002) On the Hamiltonian replica exchange method for efficient sampling of biomolecular systems: application to protein structure prediction. J Chem Phys 116:9058–9067

    CAS  Google Scholar 

  39. Itoh SG, Damjanovic A, Brooks BR (2011) pH replica-exchange method based on discrete protonation states. Proteins 79:3420–3436

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Okur A, Wickstrom L, Layten M, Geney R, Song K, Hornak V, Simmerling C (2006) Improved efficiency of replica exchange simulations through use of a hybrid explicit/implicit solvation model. J Chem Theory Comput 2:420

    CAS  PubMed  Google Scholar 

  41. Gurry T, Stultz CM (2014) Mechanism of amyloid-β fibril elongation. Biochem 53:6981–6991

    CAS  Google Scholar 

  42. Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314:141–151

    CAS  Google Scholar 

  43. Sugita Y, Kitao A, Okamoto Y (2000) Multidimensional replica-exchange method for free-energy calculations. J Chem Phys 113:6042–6051

    CAS  Google Scholar 

  44. Sun Z, Wang X, Song J (2017) Extensive assessment of various computational methods for Aspartate’s pKa Shift. J Chem Inf Model 57:1621–1639

    CAS  PubMed  Google Scholar 

  45. Davies MN, Toseland CP, Moss DS, Flower DR (2006) Benchmarking pKa prediction. BMC Biochemistry 7:1–12

    Google Scholar 

  46. Stanton CL, Houk KN (2008) Benchmarking pKa Prediction methods for Residues in proteins. J Chem Theory Comput 4:951–966

    CAS  PubMed  Google Scholar 

  47. Archontis G, Simonson T (2005) Proton binding to proteins: a free-energy component analysis using a dielectric continuum model. Biophys J 88:3888–3904

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Fowler PW, Jha S, Coveney PV (2005) Grid-based steered thermodynamic integration accelerates the calculation of binding free energies. Philos Trans R Soc Math Phys Eng Sci 363:1999–2015

    CAS  Google Scholar 

  49. Pitera JW, van Gunsteren WF (2002) A comparison of non-bonded scaling approaches for free energy calculations. Mol Simul 28:45–65

    CAS  Google Scholar 

  50. Sun ZX, Wang XH, Zhang JZH (2017) BAR-based optimum adaptive sampling regime for variance minimization in alchemical transformation. Phys Chem Chem Phys 19:15005–15020

    CAS  PubMed  Google Scholar 

  51. Wang X, Tu X, Zhang JZH, Sun Z (2018) BAR-based optimum adaptive sampling regime for variance minimization in alchemical transformation: the nonequilibrium stratification. Phys Chem Chem Phys 20:2009–2021

    CAS  PubMed  Google Scholar 

  52. Frisch MJ, Head-Gordon M, Pople JA (1990) A direct MP2 gradient method. Chem Phys Lett 166:275–280

    CAS  Google Scholar 

  53. Head-Gordon M, Pople JA, Frisch MJ (1988) MP2 energy evaluation by direct methods. Chem Phys Lett 153:503–506

    CAS  Google Scholar 

  54. Hertwig RH, Koch W (1997) On the parameterization of the local correlation functional. What is Becke-3-LYP? Chem Phys Lett 268:345–351

    CAS  Google Scholar 

  55. Kitaura K, Ikeo E, Asada T, Nakano T, Uebayasi M (1999) Fragment molecular orbital method: an approximate computational method for large molecules. Chem Phys Lett 313:701–706

    CAS  Google Scholar 

  56. Cieplak P, Cornell WD, Bayly C, Kollman PA (1995) Application of the multimolecule and multiconformational RESP methodology to biopolymers: charge derivation for DNA, RNA, and proteins. J Comput Chem 16:1357–1377

    CAS  Google Scholar 

  57. Vreven T, Morokuma K, Farkas Ö, Schlegel HB, Frisch MJ (2003) Geometry optimization with QM/MM, ONIOM, and other combined methods. I. Microiterations and constraints. J Comput Chem 24:760–769

    CAS  PubMed  Google Scholar 

  58. Stewart JJ (2007) Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J Mol Model 13:1173–1213

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Pérez A, Marchán I, Svozil D, Sponer J, Cheatham TE III, Laughton CA, Orozco M (2007) Refinement of the AMBER force field for nucleic acids: improving the description of α/γ conformers. Biophys J 92:3817–3829

    PubMed  PubMed Central  Google Scholar 

  60. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65:712–725

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C (2015) ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11:3696–3713

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Mahoney MW, Jorgensen WL (2000) A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. J Chem Phys 112:8910–8922

    CAS  Google Scholar 

  63. Best RB, Buchete N-V, Hummer G (2008) Are current molecular dynamics force fields too helical? Biophys J 95:L07–L09

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Sun Z, Zhu T, Wang X, Mei Y, Zhang JZ (2017) Optimization of convergence criteria for fragmentation methods. Chem Phys Lett 687:163–170

    CAS  Google Scholar 

  65. Raghavachari K, Saha A (2015) Accurate composite and fragment-based quantum chemical models for large molecules. Chem Rev 115:5643–5677

    CAS  PubMed  Google Scholar 

  66. Collins MA, Bettens RP (2015) Energy-based molecular fragmentation methods. Chem Rev 115:5607–5642

    CAS  PubMed  Google Scholar 

  67. Sahu N, Gadre SR (2014) Molecular tailoring approach: a route for ab initio treatment of large clusters. Acc Chem Res 47:2739–2747

    CAS  PubMed  Google Scholar 

  68. Allen WJ, Balius TE, Mukherjee S, Brozell SR, Moustakas DT, Lang PT, Case DA, Kuntz ID, Rizzo RC (2015) DOCK 6: Impact of new features and current docking performance. J Comput Chem 36:1132–1156

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kapetanovic I (2008) Computer-aided drug discovery and development (CADDD): in silico-chemico-biological approach. Chem Biol Interact 171:165–176

    CAS  PubMed  Google Scholar 

  70. Cozzini P, Kellogg GE, Spyrakis F, Abraham DJ, Costantino G, Emerson A, Fanelli F, Gohlke H, Kuhn LA, Morris GM (2008) Target flexibility: an emerging consideration in drug discovery and design. J Med Chem 51:6237–6255

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Halperin I, Ma B, Wolfson H, Nussinov R (2002) Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins 47:409–443

    CAS  PubMed  Google Scholar 

  72. Shoichet BK, Leach AR, Kuntz ID (1999) Ligand solvation in molecular docking. Proteins 34:4

    CAS  PubMed  Google Scholar 

  73. Sotriffer CA, Sanschagrin P, Matter H, Klebe G (2008) SFCscore: scoring functions for affinity prediction of protein–ligand complexes. Proteins 73:395–419

    CAS  PubMed  Google Scholar 

  74. Krammer A, Kirchhoff PD, Jiang X, Venkatachalam C, Waldman M (2005) LigScore: a novel scoring function for predicting binding affinities. J Mol Graph Model 23:395–407

    CAS  PubMed  Google Scholar 

  75. Clark RD, Strizhev A, Leonard JM, Blake JF, Matthew JB (2002) Consensus scoring for ligand/protein interactions. J Mol Graph Model 20:281–295

    CAS  PubMed  Google Scholar 

  76. Warren GL, Andrews CW, Capelli A-M, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S (2006) A critical assessment of docking programs and scoring functions. J Med Chem 49:5912–5931

    CAS  PubMed  Google Scholar 

  77. Yan Y, Wang W, Sun Z, Zhang JZ, Ji C (2017) Protein–ligand empirical interaction components for virtual screening. J Chem Inf Model 57:1793–1806

    CAS  PubMed  Google Scholar 

  78. Ferrari AM, Degliesposti G, Sgobba M, Rastelli G (2007) Validation of an automated procedure for the prediction of relative free energies of binding on a set of aldose reductase inhibitors. Biorg Med Chem 15:7865–7877

    CAS  Google Scholar 

  79. Gohlke H, Case DA (2004) Converging free energy estimates: MM-PB (GB) SA studies on the protein–protein complex Ras-Raf. J Comput Chem 25:238–250

    CAS  PubMed  Google Scholar 

  80. Case DA (2010) Normal mode analysis of protein dynamics. Curr Opin Struct Biol 4:285–290

    Google Scholar 

  81. Rapp C, Kalyanaraman C, Schiffmiller A, Schoenbrun EL, Jacobson MP (2011) A molecular mechanics approach to modeling protein-ligand interactions: relative binding affinities in congeneric series. J Chem Inf Model 51:2082–2089

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Swope WC (1982) A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. J Chem Phys 76:637

    CAS  Google Scholar 

  83. Pham TT, Shirts MR (2011) Identifying low variance pathways for free energy calculations of molecular transformations in solution phase. J Chem Phys 135:034114

    PubMed  Google Scholar 

  84. Procacci P, Chelli R (2017) Statistical mechanics of ligand-receptor noncovalent association, revisited: binding site and standard state volumes in Modern Alchemical theories. J Chem Theory Comput 13:1924–1933

    CAS  PubMed  Google Scholar 

  85. Wang X, Sun Z (2019) Understanding PIM-1 kinase inhibitor interactions with free energy simulation. Phys Chem Chem Phys 21:7544–7558

    CAS  PubMed  Google Scholar 

  86. Sun Z, Wang X, Zhao Q, Zhu T (2019) Understanding aldose reductase-inhibitors interactions with free energy simulation. J Mol Graph Model 91:10–21

    CAS  PubMed  Google Scholar 

  87. Sun Z, Wang X, Zhang JZ (2019) Determination of binding affinities of 3-Hydroxy-3-methylglutaryl coenzyme a reductase inhibitors from free energy calculation. Chem Phys Lett 723:1–10

    CAS  Google Scholar 

  88. Sun Z, Wang X, Zhang JZ (2020) Theoretical understanding of the thermodynamics and interactions in transcriptional regulator TtgR-ligand binding. Phys Chem Chem Phys 22:1511–1524

    CAS  PubMed  Google Scholar 

  89. Moraca F, Amato J, Ortuso F, Artese A, Pagano B, Novellino E, Alcaro S, Parrinello M, Limongelli V (2017) Ligand binding to telomeric G-quadruplex DNA investigated by funnel-metadynamics simulations. Proc Natl Acad Sci USA 114:E2136–E2145

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Valsson O, Tiwary P, Parrinello M (2016) Enhancing important fluctuations: rare events and metadynamics from a conceptual viewpoint. Annu Rev Phys Chem 67:159

    CAS  PubMed  Google Scholar 

  91. Tiwary P, Limongelli V, Salvalaglio M, Parrinello M (2015) Kinetics of protein-ligand unbinding: predicting pathways, rates, and rate-limiting steps. Proc Natl Acad Sci USA 112:386–391

    Google Scholar 

  92. Huang N, Kalyanaraman C, Bernacki K, Jacobson MP (2006) Molecular mechanics methods for predicting protein–ligand binding. Phys Chem Chem Phys 8:5166–5177

    CAS  PubMed  Google Scholar 

  93. Mobley DL, Wymer KL, Lim NM, Guthrie JP (2014) Blind prediction of solvation free energies from the SAMPL4 challenge. J Comput Aided Mol Des 28:135–150

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Monroe JI, Shirts MR (2014) Converging free energies of binding in cucurbit[7]uril and octa-acid host–guest systems from SAMPL4 using expanded ensemble simulations. J Comput Aided Mol Des 28:401–415

    CAS  PubMed  Google Scholar 

  95. Song LF, Bansal N, Zheng Z, Merz KM (2018) Detailed potential of mean force studies on host–guest systems from the SAMPL6 challenge. J Comput Aided Mol Des 32:1013–1026

    CAS  PubMed  Google Scholar 

  96. Rizzi A, Murkli S, McNeill JN, Yao W, Sullivan M, Gilson MK, Chiu MW, Isaacs L, Gibb BC, Mobley DL (2018) Overview of the SAMPL6 host–guest binding affinity prediction challenge. J Comput Aided Mol Des 32:937–963

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Procacci P, Guarrasi M, Guarnieri G (2018) SAMPL6 host–guest blind predictions using a non equilibrium alchemical approach. J Comput Aided Mol Des 32:965–982

    CAS  PubMed  Google Scholar 

  98. Nishikawa N, Han K, Wu X, Tofoleanu F, Brooks BR (2018) Comparison of the umbrella sampling and the double decoupling method in binding free energy predictions for SAMPL6 octa-acid host–guest challenges. J Comput Aided Mol Des 32:1075–1086

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Ndendjio SZ, Liu W, Yvanez N, Meng Z, Zavalij PY, Isaacs L (2020) Triptycene walled glycoluril trimer: synthesis and recognition properties. New J Chem 44:338–345

    CAS  PubMed  Google Scholar 

  100. Caldararu O, Olsson MA, Ignjatović MM, Wang M, Ryde U (2018) Binding free energies in the SAMPL6 octa-acid host–guest challenge calculated with MM and QM methods. J Comput Aided Mol Des 32:1027–1046

    CAS  PubMed  Google Scholar 

  101. Eken Y, Patel P, Díaz T, Jones MR, Wilson AK (2018) SAMPL6 host–guest challenge: binding free energies via a multistep approach. J Comput Aided Mol Des 32:1097–1115

    CAS  PubMed  Google Scholar 

  102. Capelli R, Carloni P, Parrinello M (2019) Exhaustive search of ligand binding pathways via volume-based Metadynamics. J Phys Chem Lett 10:3495–3499

    CAS  PubMed  Google Scholar 

  103. Sun Z, He Q, Li X, Zhu Z (2020) SAMPL6 host–guest binding affinities and binding poses from spherical-coordinates-biased simulations. J Comput Aided Mol Des 34:589–600

    CAS  PubMed  Google Scholar 

  104. https://github.com/samplchallenges/SAMPL6.

  105. https://github.com/samplchallenges/SAMPL7/tree/master/host_guest/Isaacs_clip.

  106. Jakalian A, Jack DB, Bayly CI (2002) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem 23:1623–1641

    CAS  PubMed  Google Scholar 

  107. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1173

    CAS  PubMed  Google Scholar 

  108. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    CAS  Google Scholar 

  109. Price DJ, Brooks CL III (2004) A modified TIP3P water potential for simulation with Ewald summation. J Chem Phys 121:10096–10103

    CAS  PubMed  Google Scholar 

  110. Joung IS, Cheatham TE III (2008) Determination of Alkali and Halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J Phys Chem B 112:9020–9041

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Joung IS, Cheatham TE (2009) Molecular dynamics simulations of the dynamic and energetic properties of alkali and halide ions using water-model-specific ion parameters. J Phys Chem B 113:13279–13290

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Barducci A, Bonomi M, Parrinello M (2011) Metadynamics. Wiley Interdisip Rev Comput Mol Sci 1:826–843

    CAS  Google Scholar 

  113. Barducci A, Bussi G, Parrinello M (2008) Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys Rev Lett 100:020603

    PubMed  Google Scholar 

  114. Tiwary P, Parrinello M (2015) A time-independent free energy estimator for metadynamics. J Phys Chem B 119:736–742

    CAS  PubMed  Google Scholar 

  115. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1:19–25

    Google Scholar 

  116. Tribello GA, Bonomi M, Branduardi D, Camilloni C, Bussi G (2014) PLUMED 2: new feathers for an old bird. Comput Phys Commun 185:604–613

    CAS  Google Scholar 

  117. Giovanni B, Davide D, Michele P (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:2384

    Google Scholar 

  118. Nosé S, Klein ML (1983) Constant pressure molecular dynamics for molecular systems. Mol Phys 50:1055–1076

    Google Scholar 

  119. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190

    CAS  Google Scholar 

  120. York DM, Darden TA, Pedersen LG (1993) The Effect of Long-range electrostatic interactions in simulations of macromolecular crystals: a comparison of the Ewald and Truncated list methods. J Chem Phys 99:8345–8348

    CAS  Google Scholar 

  121. Tuckerman ME, Berne BJ, Martyna GJ (1991) Molecular dynamics algorithm for multiple time scales: systems with long range forces. J Chem Phys 94:6811–6815

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by China Postdoctoral Science Foundation. Dr. Zhaoxi Sun is supported by the PKU-Boya Postdoctoral Fellowship. We thank Dr. Dongsheng Xue and Dr. Zhengdan Zhu for fruitful discussions and useful feedback on the manuscript. We are grateful for many valuable and insightful comments from the anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoxi Sun.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 615 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z. SAMPL7 TrimerTrip host–guest binding poses and binding affinities from spherical-coordinates-biased simulations. J Comput Aided Mol Des 35, 105–115 (2021). https://doi.org/10.1007/s10822-020-00335-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-020-00335-9

Keywords

Navigation