Fujita T, Iwasa J, Hansch C (1964) A new substituent constant, π, derived from partition coefficients. J Am Chem Soc 86(23):5175–5180
CAS
Article
Google Scholar
Iwasa J, Fujita T, Hansch C (1965) Substituent constants for aliphatic functions obtained from partition coefficients. J Med Chem 8(2):150–153
CAS
Article
Google Scholar
Wang R, Fu Y, Lai L (1997) A new atom-additive method for calculating partition coefficients. J Chem Inf Comput Sci 37(3):615–621
CAS
Article
Google Scholar
Moriguchi I et al (1992) Simple method of calculating octanol/water partition coefficient. Chem Pharm Bull 40(1):127–130
CAS
Article
Google Scholar
Lo Y-C et al (2018) Machine learning in chemoinformatics and drug discovery. Drug Discov Today 23(8):1538–1546
CAS
Article
Google Scholar
Mitchell JBO (2014) Machine learning methods in chemoinformatics. WIREs Comput Mol Sci 4(5):468–481
CAS
Article
Google Scholar
Polanski J, Gasteiger J (2017) Computer representation of chemical compounds. In: Leszczynski J et al (eds) Handbook of computational chemistry. Springer International Publishing, Cham, pp 1997–2039
Chapter
Google Scholar
Hall LH, Mohney B, Kier LB (1991) The electrotopological state: an atom index for QSAR. Quant Struct Act Relat 10(1):43–51
CAS
Article
Google Scholar
Kier LB, Hall LH (1990) An electrotopological-state index for atoms in molecules. Pharm Res 7(8):801–807
CAS
Article
Google Scholar
Hall LH, Kier LB (1995) Electrotopological state indices for atom types: a novel combination of electronic, topological, and valence state information. J Chem Inf Comput Sci 35(6):1039–1045
CAS
Article
Google Scholar
Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50(5):742–754
CAS
Article
Google Scholar
Wang J-B et al (2015) In silico evaluation of logD7,4 and comparison with other prediction methods. J Chemom 29(7):389–398
CAS
Article
Google Scholar
Wang R, Gao Y, Lai L (2000) Calculating partition coefficient by atom-additive method. Perspect Drug Discov Des 19(1):47–66
CAS
Article
Google Scholar
Chen H-F (2009) In silico log P prediction for a large data set with support vector machines, radial basis neural networks and multiple linear regression. Chem Biol Drug Des 74(2):142–147
CAS
Article
Google Scholar
Lowe EW et al (2011) Comparative analysis of machine learning techniques for the prediction of logP. In: 2011 IEEE symposium on computational intelligence in bioinformatics and computational biology (CIBCB), IEEE, Paris
Zang Q et al (2017) In silico prediction of physicochemical properties of environmental chemicals using molecular fingerprints and machine learning. J Chem Inf Model. 57(1):36–49
CAS
Article
Google Scholar
Yap CW (2011) PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem 32(7):1466–1474
CAS
Article
Google Scholar
Todeschini, R, V Consonni (2009) Molecular descriptors for chemoinformatics: volume I: alphabetical listing/volume II: appendices, references, vol 41. Wiley, Weinheim
Book
Google Scholar
Pedregosa F et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830
Google Scholar
Peltason L (2007) J Bajorath, SAR index: quantifying the nature of structure–activity relationships. J Med Chem 50(23):5571–5578
CAS
Article
Google Scholar
Guha R, Van Drie JH (2008) Structure–activity landscape index: identifying and quantifying activity cliffs. J Chem Inf Model 48(3):646–658
CAS
Article
Google Scholar
Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26(3):297–302
Article
Google Scholar
Bajusz D (2015) A Rácz, K Héberger, Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J Cheminform 7(1):20
Article
Google Scholar
Cheng T et al (2007) Computation of octanol−water partition coefficients by guiding an additive model with knowledge. J Chem Inf Model 47(6):2140–2148
CAS
Article
Google Scholar
Mansouri K et al (2018) OPERA models for predicting physicochemical properties and environmental fate endpoints. J Cheminform 10(1):10
Article
Google Scholar
Martel S et al (2013) Large, chemically diverse dataset of logP measurements for benchmarking studies. Eur J Pharm Sci 48(1–2):21–29
CAS
Article
Google Scholar
Daina A (2014) O Michielin, V Zoete, iLOGP: a simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. J Chem Inf Model 54(12):3284–3301
CAS
Article
Google Scholar
Fraaije JGEM et al (2016) Coarse-grained models for automated fragmentation and parametrization of molecular databases. J Chem Inf Model 56(12):2361–2377
CAS
Article
Google Scholar
Gedeck P (2017) S Skolnik, S Rodde, Developing collaborative QSAR models without sharing structures. J Chem Inf Model 57(8):1847–1858
CAS
Article
Google Scholar
Plante J (2018) S Werner, JPlogP: an improved logP predictor trained using predicted data. J Cheminform 10(1):61
CAS
Article
Google Scholar
Işık M et al (2019) Octanol-water partition coefficient measurements for the SAMPL6 Blind Prediction Challenge. J Comput Aided Mol Des. https://doi.org/10.1007/s10822-019-00271-3
Article
PubMed
Google Scholar
Peltason L (2010) P Iyer, J Bajorath, Rationalizing three-dimensional activity landscapes and the influence of molecular representations on landscape topology and the formation of activity cliffs. J Chem Inf Model 50(6):1021–1033
CAS
Article
Google Scholar
Mannhold R, van de Waterbeemd H (2001) Substructure and whole molecule approaches for calculating log P J Comput Aided Mol Des 15(4), 337–354.
CAS
Article
Google Scholar
Zakharov AV et al (2019) Novel consensus architecture to improve performance of large-scale multitask deep learning QSAR models. J Chem Inf Model 59(11):4613–4624
CAS
Article
Google Scholar
Moriwaki H et al (2018) Mordred: a molecular descriptor calculator. J Cheminform 10(1):4
Article
Google Scholar
Cherkasov A et al (2014) QSAR modeling: where have you been? Where are you going to? J Med Chem 57(12):4977–5010
CAS
Article
Google Scholar
Wu Z et al (2018) MoleculeNet: a benchmark for molecular machine learning. Chem Sci 9(2):513–530
CAS
Article
Google Scholar
Tiño P et al (2004) Nonlinear prediction of quantitative structure−activity relationships. J Chem Inf Comput Sci 44(5):1647–1653
Article
Google Scholar
Olson RS, Moore JH (2019) TPOT: a tree-based pipeline optimization tool for automating machine learning. In: Hutter F, Kotthoff L, Vanschoren J (eds) Automated machine learning: methods, systems, challenges. Springer, Cham, pp 151–160
Chapter
Google Scholar