Skip to main content

Advertisement

Log in

Discovery of new multifunctional selective acetylcholinesterase inhibitors: structure-based virtual screening and biological evaluation

Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Although the mechanism of Alzheimer’s disease (AD) is still not fully understood, the development of multifunctional AChE inhibitors remains a research focus for AD treatment. In this study, 48 AChE candidate inhibitors were picked out from SPECS database through a pharmacophore- and molecular docking-based virtual screening. The biological evaluation results indicated that four compounds 7, 29, 41 and 48 with different scaffolds exhibited potent and selective AChE inhibitory activity, with the best IC50 value of 1.62 ± 0.11 μM obtained for 48. Then their mechanism of action, the inhibition on Aβ aggregation, neurotoxicity, and neuroprotective activity against Aβ-induced nerve cell injury were well studied. The binding mode of 48 with AChE was also proposed. The present bioassay results indicated that these multifunctional AChE inhibitors were worth for further structural derivatization to make them the anti-AD lead compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Wiemann J, Loesche A, Csuk R (2017) Novel dehydroabietylamine derivatives as potent inhibitors of acetylcholinesterase. Bioorg Chem 74:145–157

    Article  CAS  PubMed  Google Scholar 

  2. https://www.alz.co.uk/research/world-report-2018. Accessed on 12/24/2018

  3. Chen Y, Liu ZL, Fu TM, Li W, Xu XL, Sun HP (2015) Discovery of new acetylcholinesterase inhibitors with small core structures through shape-based virtual screening. Bioorg Med Chem Lett 25(17):3442–3446

    Article  CAS  PubMed  Google Scholar 

  4. Kodamullil AT, Zekri F, Sood M, Hengerer B, Canard L, McHale D, Hofmann-Apitius M (2017) Trial watch: tracing investment in drug development for alzheimer disease. Nat Rev Drug Discov 16(12):819

    Article  CAS  PubMed  Google Scholar 

  5. Karran E, Mercken M, De Strooper B (2011) The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 10(9):698–712

    Article  CAS  Google Scholar 

  6. Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81(2):741–766

    Article  CAS  PubMed  Google Scholar 

  7. Thorsett ED, Latimer LH (2000) Therapeutic approaches to Alzheimer’s disease. Curr Opin Chem Biol 4(4):377–382

    Article  CAS  PubMed  Google Scholar 

  8. Ahmad A, Ali T, Park HY, Badshah H, Rehman SU, Kim MO (2017) Neuroprotective effect of fisetin against amyloid-beta-induced cognitive/synaptic dysfunction, neuroinflammation, and neurodegeneration in adult mice. Mol Neurobiol 54(3):2269–2285

    Article  CAS  PubMed  Google Scholar 

  9. Greig NH, Utsuki T, Yu Q, Zhu X, Holloway HW, Perry T, Lee B, Ingram DK, Lahiri DK (2001) A new therapeutic target in Alzheimer’s disease treatment: attention to butyrylcholinesterase. Curr Med Res Opin 17(3):159–165

    Article  CAS  PubMed  Google Scholar 

  10. Anand P, Singh B (2013) A review on cholinesterase inhibitors for Alzheimer’s disease. Arch Pharm Res 36(4):375–399

    Article  CAS  PubMed  Google Scholar 

  11. Feng B, Li X, Xia J, Wu S (2017) Discovery of novel isoflavone derivatives as AChE/BuChE dual-targeted inhibitors: synthesis, biological evaluation and molecular modelling. J Enzyme Inhib Med Chem 32(1):968–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. De Vita D, Pandolfi F, Ornano L, Feroci M, Chiarotto I, Sileno I, Pepi F, Costi R, Di Santo R, Scipione L (2016) New N,N-dimethylcarbamate inhibitors of acetylcholinesterase: design synthesis and biological evaluation. J Enzyme Inhib Med Chem 31(sup4):106–113

    Article  CAS  PubMed  Google Scholar 

  13. Petersen RC, Thomas RG, Grundman M, Bennett D, Doody R, Ferris S, Galasko D, Jin S, Kaye J, Levey A, Pfeiffer E, Sano M, van Dyck CH, Thal LJ (2005) Vitamin E and donepezil for the treatment of mild cognitive impairment. N Engl J Med 352(23):2379–2388

    Article  CAS  PubMed  Google Scholar 

  14. Weinstock M (1999) Selectivity of cholinesterase inhibition: clinical implications for the treatment of Alzheimer’s disease. CNS Drugs 12(4):307–323

    Article  CAS  Google Scholar 

  15. Cheng ZQ, Song JL, Zhu K, Zhang J, Jiang CS, Zhang H (2018) Total synthesis of pulmonarin B and design of brominated phenylacetic acid/tacrine hybrids: marine pharmacophore inspired discovery of new ChE and Aβ aggregation inhibitors. Mar Drugs 16(9):293

    Article  CAS  PubMed Central  Google Scholar 

  16. Li JC, Zhang J, Rodrigues MC, Ding DJ, Longo JP, Azevedo RB, Muehlmann LA, Jiang CS (2016) Synthesis and evaluation of novel 1,2,3-triazole-based acetylcholinesterase inhibitors with neuroprotective activity. Bioorg Med Chem Lett 26(16):3881–3885

    Article  CAS  PubMed  Google Scholar 

  17. Cheng ZQ, Zhu KK, Zhang J, Song JL, Muehlmann LA, Jiang CS, Liu CL, Zhang H (2018) Molecular docking guided design and synthesis of new IAA-tacrine hybrids as multifunctional AChE/BChE inhibitors. Bioorg Chem 83:277–288

    Article  CAS  PubMed  Google Scholar 

  18. Doytchinova I, Atanasova M, Valkova I, Stavrakov G, Philipova I, Zhivkova Z, Zheleva-Dimitrova D, Konstantinov S, Dimitrov I (2018) Novel hits for acetylcholinesterase inhibition derived by docking-based screening on ZINC database. J Enzyme Inhib Med Chem 33(1):768–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. de Freitas Silva M, Dias KST, Gontijo VS, Ortiz CJC, Viegas C Jr (2018) Multi-target directed drugs as a modern approach for drug design towards Alzheimer’s disease: an update. Curr Med Chem 25(29):3491–3525

    Article  CAS  Google Scholar 

  20. Panek D, Wichur T, Godyń J, Pasieka A, Malawska B (2017) Advances toward multifunctional cholinesterase and β-amyloid aggregation inhibitors. Future Med Chem 9(15):1835–1854

    Article  CAS  PubMed  Google Scholar 

  21. Romero A, Marco-Contelles J (2017) Recent developments on multi-target-directed tacrines for Alzheimer’s disease. I. the pyranotacrines. Curr Top Med Chem 17(31):3328–3335

    Article  CAS  PubMed  Google Scholar 

  22. Goyal D, Kaur A, Goyal B (2018) Benzofuran and Indole: promising scaffolds for drug development in Alzheimer’s disease. ChemMedChem 13(13):1275–1299

    Article  CAS  PubMed  Google Scholar 

  23. Sharma P, Tripathi A, Tripathi PN, Prajapati SK, Seth A, Tripathi MK, Srivastava P, Tiwari V, Krishnamurthy S, Shrivastava SK (2019) Design and development of multitarget-directed N-benzylpiperidine analogs as potential candidates for the treatment of Alzheimer’s disease. Eur J Med Chem 167:510–524

    Article  CAS  PubMed  Google Scholar 

  24. Kontoyianni M (2017) Docking and virtual screening in drug discovery. Methods Mol Biol 1647:255–266

    Article  CAS  PubMed  Google Scholar 

  25. Cheung J, Gary EN, Shiomi K, Rosenberry TL (2013) Structures of human acetylcholinesterase bound to dihydrotanshinone I and territrem B show peripheral site flexibility. ACS Med Chem Lett 4(11):1091–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cheung J, Rudolph MJ, Burshteyn F, Cassidy MS, Gary EN, Love J, Franklin MC, Height JJ (2012) Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J Med Chem 55(22):10282–10286

    Article  CAS  PubMed  Google Scholar 

  27. Accelrys, San Diego, CA

  28. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47(7):1750–1759

    Article  CAS  PubMed  Google Scholar 

  29. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47(7):1739–1749

    Article  CAS  Google Scholar 

  30. Talesa TN (2001) Acetylcholinesterase in Alzheimer’s disease. Mech Ageing Dev 122(16):1961–1969

    Article  CAS  PubMed  Google Scholar 

  31. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and empirical binding free energy function. J Comput Chem 19(14):1639–1662

    Article  CAS  Google Scholar 

  32. Fang L, Fang X, Gou S, Lupp A, Lenhardt I, Sun Y, Huang Z, Chen Y, Zhang Y, Fleck C (2014) Design, synthesis and biological evaluation of D-ring opened galantamine analogs as multifunctional anti-Alzheimer agents. Eur J Med Chem 76:376–386

    Article  CAS  PubMed  Google Scholar 

  33. Jalili-Baleh L, Nadri H, Moradi A, Bukhari SNA, Shakibaie M, Jafari M, Golshani M, Homayouni Moghadam F, Firoozpour L, Asadipour A, Emami S, Khoobi M, Foroumadi A (2017) New racemic annulated pyrazolo[1,2-b]phthalazines as tacrine-like AChE inhibitors with potential use in Alzheimer’s disease. Eur J Med Chem 139:280–289

    Article  CAS  PubMed  Google Scholar 

  34. Mei WW, Ji SS, Xiao W, Wang XD, Jiang CS, Ma WQ, Zhang HY, Gong JX, Guo YW (2017) Synthesis and biological evaluation of benzothiazol-based 1,3,4-oxadiazole derivatives as amyloid β-targeted compounds against Alzheimer’s disease. Monatsh Chem 148:1807–1815

    Article  CAS  Google Scholar 

  35. Accelrys Discovery Studio 3.0, Accelrys, San Diego, CA, 2010

  36. Zhang J, Li JC, Song JL, Cheng ZQ, Sun JZ, Jiang CS (2018) Synthesis and evaluation of coumarin/1,2,4-oxadiazole hybrids as selective BChE inhibitors with neuroprotective activity. J Asian Nat Prod Res. https://doi.org/10.1080/10286020.2018.1492566

    Article  PubMed  Google Scholar 

  37. Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53(7):2719–2740

    Article  CAS  PubMed  Google Scholar 

  38. Delogu GL, Matos MJ, Fanti M, Era B, Medda R, Pieroni E, Fais A, Kumar A, Pintus F (2016) 2-Phenylbenzofuran derivatives as butyrylcholinesterase inhibitors: synthesis, biological activity and molecular modeling. Bioorg Med Chem Lett 26(9):2308–2313

    Article  CAS  PubMed  Google Scholar 

  39. Yuan C, Gao Z (2013) Aβ interacts with both the iron center and the porphyrin ring of heme: mechanism of heme’s action on Aβ aggregation and disaggregation. Chem Res Toxicol 26(2):262–269

    Article  CAS  PubMed  Google Scholar 

  40. Carvajal FJ, Inestrosa NC (2011) Interactions of AChE with Aβ aggregates in Alzheimer’s brain: therapeutic relevance of IDN 5706. Front Mol Neurosci 4:19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Barbosa M, Valentão P, Andrade PB (2014) Bioactive compounds from macroalgae in the new millennium: implications for neurodegenerative diseases. Mar Drugs 12(9):4934–4972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Guzior N, Wieckowska A, Panek D, Malawska B (2015) Recent development of multifunctional agents as potential drug candidates for the treatment of Alzheimer’s disease. Curr Med Chem 22(3):373–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pajouhesh H, Lenz GR (2005) Medicinal chemical properties of successful central nervous system drugs. NeuroRx 2(4):541–553

    Article  PubMed  PubMed Central  Google Scholar 

  44. Pardridge WM (2005) The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2(1):3–14

    Article  PubMed  PubMed Central  Google Scholar 

  45. Liu H, Wang L, Lv M, Pei R, Li P, Pei Z, Wang Y, Su W, Xie XQ (2015) AlzPlatform: an Alzheimer’s disease domain-specific chemogenomics knowledgebase for polypharmacology and target identification research. J Chem Inf Model 54(4):1050–1060

    Article  CAS  Google Scholar 

  46. https://www.cbligand.org/BBB/predictor.php

  47. Maher P, Davis JB (1996) The role of monoamine metabolism in oxidative glutamate toxicity. J Neurosci 16(20):6394–6401

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research work was financially supported by the National Natural Science Foundation of China [Nos. 21672082, 81803438], Shandong Key Development Project [No. 2016GSF201209], the Young Taishan Scholars Program [No. tsqn20161037], Natural Science Foundation of Shandong Province [Nos. ZR201807060857, ZR2017BH038, JQ201721], and Shandong Talents Team Cultivation Plan of University Preponderant Discipline [No. 10027].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kongkai Zhu or Hua Zhang.

Ethics declarations

Conflicts of interest

The authors have declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 29688 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, CS., Ge, YX., Cheng, ZQ. et al. Discovery of new multifunctional selective acetylcholinesterase inhibitors: structure-based virtual screening and biological evaluation. J Comput Aided Mol Des 33, 521–530 (2019). https://doi.org/10.1007/s10822-019-00202-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-019-00202-2

Keywords

Navigation