Skip to main content
Log in

Boosted feature selectors: a case study on prediction P-gp inhibitors and substrates

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Feature selection is commonly used as a preprocessing step to machine learning for improving learning performance, lowering computational complexity and facilitating model interpretation. This paper proposes the application of boosting feature selection to improve the classification performance of standard feature selection algorithms evaluated for the prediction of P-gp inhibitors and substrates. Two well-known classification algorithms, decision trees and support vector machines, were used to classify the chemical compounds. The experimental results showed better performance for boosting feature selection with respect to the standard feature selection algorithms while maintaining the capability for feature reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sharom F (1997) The P-glycoprotein efflux pump: how does it transport drugs? J Membr Biol 160(3):161–175

    Article  CAS  Google Scholar 

  2. Kim RB, Fromm MF, Wandel C, Leake B, Wood AJ, Roden DM, Wilkinson GR (1998) The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Invest 101(2):289–294

    Article  CAS  Google Scholar 

  3. Fromm M (2000) P-glycoprotein: a defense mechanism limiting oral bioavailability and CNS accumulation of drugs. Int J Clin Pharmacol Ther 38(2):69–74

    Article  CAS  Google Scholar 

  4. Marzolini C, Paus E, Buclin T, Kim RB (2004) Polymorphisms in human MDR1 (P-glycoprotein): recent advances and clinical relevance. Clin Pharmacol Ther 75(1):13–33

    Article  CAS  Google Scholar 

  5. Szakács G, Chen GK, Gottesman MM (2004) The molecular mysteries underlying P-glycoprotein-mediated multidrug resistance. Cancer Biol Ther 3(4):382–384

    Article  Google Scholar 

  6. Kartner N, Ling V (1983) Cell surface P-glycoprotein associated with multidrug resistance in mammalian cell lines. Cell surface P-glycoprotein associated with multidrug resistance in mammalian cell lines 221(4617):1285–1288

  7. Szakács G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5(3):219

    Article  Google Scholar 

  8. Chen L, Li Y, Zhao Q, Peng H, Hou T (2011) ADME evaluation in drug discovery. 10. Predictions of P-glycoprotein inhibitors using recursive partitioning and naive bayesian classification techniques. Mol Pharm 8(3):889–900. https://doi.org/10.1021/mp100465q

    Article  CAS  PubMed  Google Scholar 

  9. Xue Y, Yap CW, Sun LZ, Cao ZW, Wang JF, Chen YZ (2004) Prediction of P-glycoprotein substrates by a support vector machine approach. J Chem Inf Comput Sci 44(4):1497–1505. https://doi.org/10.1021/ci049971e

    Article  CAS  PubMed  Google Scholar 

  10. Huang J, Ma G, Muhammad I, Cheng Y (2007) Identifying P-glycoprotein substrates using a support vector machine optimized by a particle swarm. J Chem Inf Model 47(4):1638–1647. https://doi.org/10.1021/ci700083n

    Article  CAS  PubMed  Google Scholar 

  11. Cerqueira Lima P, Golbraikh A, Oloff S, Xiao Y, Tropsha A (2006) Combinatorial QSAR modeling of P-glycoprotein substrates. J Chem Inf Model 46(3):1245–1254

    Article  Google Scholar 

  12. Wang Z, Chen Y, Liang H, Bender A, Glen RC, Yan A (2011) P-glycoprotein substrate models using support vector machines based on a comprehensive data set. J Chem Inf Model 51(6):1447–1456. https://doi.org/10.1021/ci2001583

    Article  CAS  PubMed  Google Scholar 

  13. Cianchetta G, Singleton RW, Zhang M, Wildgoose M, Giesing D, Fravolini A, Cruciani G, Vaz RJ (2005) A pharmacophore hypothesis for P-glycoprotein substrate recognition using GRIND-based 3D-QSAR. J Med Chem 48(8):2927–2935

    Article  CAS  Google Scholar 

  14. Crivori P, Reinach B, Pezzetta D, Poggesi I (2006) Computational models for identifying potential P-glycoprotein substrates and inhibitors. Computational models for identifying potential P-glycoprotein substrates and inhibitors 3(1):33–44. https://doi.org/10.1021/mp050071a

    Article  CAS  Google Scholar 

  15. Gombar VK, Polli JW, Humphreys JE, Wring SA, Serabjit-Singh CS (2004) Predicting P-glycoprotein substrates by a quantitative structure–activity relationship model. J Pharm Sci 93(4):957–968

    Article  CAS  Google Scholar 

  16. Broccatelli F, Carosati E, Neri A, Frosini M, Goracci L, Oprea TI, Cruciani G (2011) A novel approach for predicting P-glycoprotein (ABCB1) inhibition using molecular interaction fields. J Med Chem 54(6):1740–1751

    Article  CAS  Google Scholar 

  17. Poongavanam V, Haider N, Ecker GF (2012) Fingerprint-based in silico models for the prediction of P-glycoprotein substrates and inhibitors. Bioorg Med Chem 20(18):5388–5395

    Article  CAS  Google Scholar 

  18. Veltri D, Kamath U, Shehu A (2014) A novel method to improve recognition of antimicrobial peptides through distal sequence-based features. In: Bioinformatics and biomedicine (BIBM), 2014 IEEE international conference on IEEE, Belfast, pp 371–378

  19. Pérez-Rodríguez J, de Haro-García A, del Castillo JAR, García-Pedrajas N (2018) A general framework for boosting feature subset selection algorithms. Inf Fusion 44:147–175

    Article  Google Scholar 

  20. RDKit: Open-Source Cheminformatics Software (Release 2017.03.1, 2017). http://www.rdkit.org/. Accessed 2 Sept 2017

  21. Daylight Chemical Information Systems, Inc. http://www.daylight.com/. Accessed 2 Jan 2018

  22. G L Fingerprints in the RDKit. http://www.rdkit.org/UGM/2012/Landrum_RDKit_UGM.Fingerprints.Final.pptx.pdf. Accessed 2 Jan 2018

  23. Liu X, Wang H (2005) A discretization algorithm based on a heterogeneity criterion. IEEE Trans Knowl Data Eng 17(9):1166–1173. https://doi.org/10.1109/TKDE.2005.135

    Article  Google Scholar 

  24. Goodarzi M, Dejaegher B, Heyden YV (2012) Feature selection methods in QSAR studies. J AOAC Int 95(3):636–651

    Article  CAS  Google Scholar 

  25. Guan S-U, Liu J, Qi Y (2004) An incremental approach to contribution-based feature selection. Int J Intell Syst 13(1):15. https://doi.org/10.1515/JISYS.2004.13.1.15

    Article  Google Scholar 

  26. Sivagaminathan RK, Ramakrishnan S (2007) A hybrid approach for feature subset selection using neural networks and ant colony optimization. Expert Syst Appl 33(1):49–60. https://doi.org/10.1016/j.eswa.2006.04.010

    Article  Google Scholar 

  27. Newby D, Freitas AA, Ghafourian T (2013) Pre-processing feature selection for improved C&RT models for oral absorption. J Chem Inf Model 53(10):2730–2742. https://doi.org/10.1021/ci400378j

    Article  CAS  PubMed  Google Scholar 

  28. Peralta B, Soto A (2014) Embedded local feature selection within mixture of experts. Inf Sci 269:176–187

    Article  Google Scholar 

  29. Weston J, Pérez-Cruz F, Bousquet O, Chapelle O, Elisseeff A, Schölkopf B (2003) Feature selection and transduction for prediction of molecular bioactivity for drug design. Bioinformatics 19(6):764–771. https://doi.org/10.1093/bioinformatics/btg054

    Article  CAS  PubMed  Google Scholar 

  30. Liu Y (2004) A comparative study on feature selection methods for drug discovery. J Chem Inf Comput Sci 44(5):1823–1828. https://doi.org/10.1021/ci049875d

    Article  CAS  PubMed  Google Scholar 

  31. Demel MA, Janecek AGK, Gansterer WN, Ecker GF (2009) Comparison of contemporary feature selection algorithms: application to the classification of ABC-transporter substrates. QSAR Comb Sci 28(10):1087–1091. https://doi.org/10.1002/qsar.200860191

    Article  CAS  Google Scholar 

  32. Wassermann AM, Nisius B, Vogt M, Bajorath J (2010) Identification of descriptors capturing compound class-specific features by mutual information analysis. J Chem Inf Model 50(11):1935–1940. https://doi.org/10.1021/ci100319n

    Article  CAS  PubMed  Google Scholar 

  33. Godden JW, Bajorath J (2003) An information-theoretic approach to descriptor selection for database profiling and QSAR modeling. QSAR Comb Sci 22(5):487–497. https://doi.org/10.1002/qsar.200310001 doi

    Article  CAS  Google Scholar 

  34. Whitley DC, Ford MG, Livingstone DJ (2000) Unsupervised forward selection: a method for eliminating redundant variables. J Chem Inf Comput Sci 40(5):1160–1168. https://doi.org/10.1021/ci000384c

    Article  CAS  PubMed  Google Scholar 

  35. Salt DW, Maccari L, Botta M, Ford MG (2004) Variable selection and specification of robust QSAR models from multicollinear data: arylpiperazinyl derivatives with affinity and selectivity for α2-adrenoceptors. J Comput Aided Mol Des 18(7):495–509. https://doi.org/10.1007/s10822-004-5203-7

    Article  CAS  PubMed  Google Scholar 

  36. Roy K, Popelier PLA (2008) Exploring predictive QSAR models for hepatocyte toxicity of phenols using QTMS descriptors. Bioorg Med Chem 18(8):2604–2609. https://doi.org/10.1016/j.bmcl.2008.03.035

    Article  CAS  Google Scholar 

  37. Roy K, Ghosh G (2005) QSTR with extended topochemical atom indices. Part 5: Modeling of the acute toxicity of phenylsulfonyl carboxylates to Vibrio fischeri using genetic function approximation. Bioorg Med Chem 13(4):1185–1194. https://doi.org/10.1016/j.bmc.2004.11.014

    Article  CAS  PubMed  Google Scholar 

  38. Bhattacharya P, Roy K (2005) QSAR of adenosine A3 receptor antagonist 1,2,4-triazolo[4,3-a]quinoxalin-1-one derivatives using chemometric tools. Bioorg Med Chem 15(16):3737–3743. https://doi.org/10.1016/j.bmcl.2005.05.051

    Article  CAS  Google Scholar 

  39. Yu L, Liu H (2004) Efficient feature selection via analysis of relevance and redundancy. J Mach Learn Res 5(Oct):1205–1224

    Google Scholar 

  40. Mitra P, Murthy C, Pal SK (2002) Unsupervised feature selection using feature similarity. IEEE Trans Pattern Anal Mach 24(3):301–312

    Article  Google Scholar 

  41. Mahobia NK, Patel RD, Sheikh NW, Singh SK, Mishra A, Dhardubey R (2010) Validation method used in quantitative structure activity relationship. Der Pharma Chem 2(5):260–271

    CAS  Google Scholar 

  42. Golbraikh A, Tropsha A (2002) Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. J Comput Aided Mol Des 16(5):357–369. https://doi.org/10.1023/a:1020869118689

    Article  CAS  PubMed  Google Scholar 

  43. Schrevens E, Cornell J (1993) Design and analysis of mixture systems: applications in hydroponic, plant nutrition research. In: Optimization of plant nutrition. Springer, Berlin, pp 179–186

    Chapter  Google Scholar 

  44. Snee RD (1977) Validation of regression models: methods and examples. Technometrics 19(4):415–428

    Article  Google Scholar 

  45. Daszykowski M, Walczak B, Massart DL (2002) Representative subset selection. Anal Chim Acta 468(1):91–103. https://doi.org/10.1016/S0003-2670(02)00651-7

    Article  CAS  Google Scholar 

  46. Bowden GJ, Maier HR, Dandy GC (2002) Optimal division of data for neural network models in water resources applications. Water Resour Res 38(2):2-1

    Article  Google Scholar 

  47. May RJ, Maier HR, Dandy GC (2010) Data splitting for artificial neural networks using SOM-based stratified sampling. Neural Netw 23(2):283–294

    Article  CAS  Google Scholar 

  48. Olsson IM, Gottfries J, Wold S (2004) Controlling coverage of D-optimal onion designs and selections. J Chemometr 18(12):548–557

    Article  CAS  Google Scholar 

  49. Eriksson L, Arnhold T, Beck B, Fox T, Johansson E, Kriegl JM (2004) Onion design and its application to a pharmaceutical QSAR problem. J Chemometr 18(3–4):188–202. https://doi.org/10.1002/cem.854

    Article  CAS  Google Scholar 

  50. Puzyn T, Mostrag-Szlichtyng A, Gajewicz A, Skrzyński M, Worth AP (2011) Investigating the influence of data splitting on the predictive ability of QSAR/QSPR models. Struct Chem 22(4):795–804

    Article  CAS  Google Scholar 

  51. Gütlein M, Helma C, Karwath A, Kramer S (2013) A large-scale empirical evaluation of cross-validation and external test set validation in (Q) SAR. Mol Inf 32(5–6):516–528

    Article  Google Scholar 

  52. Varmuza K, Filzmoser P, Hilchenbach M, Krüger H, Silén J (2014) KNN classification—evaluated by repeated double cross validation: recognition of minerals relevant for comet dust. Chemometr Intell Lab Syst 138:64–71. https://doi.org/10.1016/j.chemolab.2014.07.011

    Article  CAS  Google Scholar 

  53. Ishibuchi H, Nojima Y (2013) Repeated double cross-validation for choosing a single solution in evolutionary multi-objective fuzzy classifier design. Knowl Based Syst 54:22–31

    Article  Google Scholar 

  54. Filzmoser P, Liebmann B, Varmuza K (2009) Repeated double cross validation. J Chemometr 23(4):160–171

    Article  CAS  Google Scholar 

  55. Luque Ruiz I, Gómez Nieto M (2018) A new data representation based on relative measurements and fingerprint patterns for the development of QSAR regression models. Chemometr Intell Lab Syst 176:53–65. https://doi.org/10.1016/j.chemolab.2018.03.007

    Article  CAS  Google Scholar 

  56. Witten IH, Frank E, Hall MA, Pal CJ (2016) Data mining: practical machine learning tools and techniques. Morgan Kaufmann, Burlington

    Google Scholar 

  57. Bradley AP (1997) The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit 30(7):1145–1159

    Article  Google Scholar 

  58. Cerruela García G, García-Pedrajas N, Luque Ruiz I, Gómez-Nieto M (2018) Molecular activity prediction by means of supervised subspace projection based ensembles of classifiers. SAR QSAR Environ Res 29(3):187–212. https://doi.org/10.1080/1062936X.2017.1423376

    Article  PubMed  Google Scholar 

  59. Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55 (1):119–139

    Article  Google Scholar 

  60. Chang C-C, Lin C-J (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):27

    Article  Google Scholar 

  61. Quinlan JR (1996) Improved use of continuous attributes in C4. 5. J Artif Intell Res 4:77–90

    Article  Google Scholar 

  62. Wilcoxon F (1945) Individual comparisons by ranking methods. Biometr Bull 1(6):80–83

    Article  Google Scholar 

  63. Sheskin DJ (2003) Handbook of parametric and nonparametric statistical procedures. CRC Press, Boca Raton

    Book  Google Scholar 

  64. Chembench repository. https://chembench.mml.unc.edu. Accessed 8 Aug 2018

  65. Schattel V, Hinselmann G, Jahn A, Zell A, Laufer S (2011) Modeling and benchmark data set for the inhibition of c-Jun N-terminal kinase-3. J Chem Inf Model 51(3):670–679

    Article  CAS  Google Scholar 

  66. Hammann F, Suenderhauf C, Huwyler Jr (2011) A binary ant colony optimization classifier for molecular activities. J Chem Inf Model 51(10):2690–2696

    Article  CAS  Google Scholar 

  67. Mohr J, Jain B, Sutter A, Laak AT, Steger-Hartmann T, Heinrich N, Obermayer K (2010) A maximum common subgraph kernel method for predicting the chromosome aberration test. J Chem Inf Model 50(10):1821–1838

    Article  CAS  Google Scholar 

  68. Russom CL, Williams CR, Stewart TW, Swank AE, Richard AM (2008) DSSTox EPA fathead minnow acute toxicity database (EPAFHM): SDF files and documentation, version: EPAFHM_v4b_617_15Feb2008, http://www.epa.gov/ncct/dsstox/sdf_epafhm.html. Accessed 8 Aug 2018

  69. Fontaine F, Pastor M, Zamora I, Sanz F (2005) Anchor—grind: Filling the gap between standard 3d qsar and the grid-independent descriptors. J Med Chem 48(7):2687–2694

    Article  CAS  Google Scholar 

  70. Helma C, Cramer T, Kramer S, De Raedt L (2004) Data mining and machine learning techniques for the identification of mutagenicity inducing substructures and structure activity relationships of noncongeneric compounds. J Chem Inf Comput Sci 44(4):1402–1411

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Project TIN2015-66108-P of the Spanish Ministry of Science and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Cerruela García.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cerruela García, G., García-Pedrajas, N. Boosted feature selectors: a case study on prediction P-gp inhibitors and substrates. J Comput Aided Mol Des 32, 1273–1294 (2018). https://doi.org/10.1007/s10822-018-0171-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-018-0171-5

Keywords

Navigation