Skip to main content
Log in

SAMPL6 host–guest blind predictions using a non equilibrium alchemical approach

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

In this paper, we compute, by means of a non equilibrium alchemical technique, called fast switching double annihilation methods (FSDAM), the absolute standard dissociation free energies of the the octa acids host–guest systems in the SAMPL6 challenge initiative. FSDAM is based on the production of canonical configurations of the bound and unbound states via enhanced sampling and on the subsequent generation of hundreds of fast non-equilibrium ligand annihilation trajectories. The annihilation free energies of the ligand when bound to the receptor and in bulk solvent are obtained from the collection of work values using an estimate based on the Crooks theorem for driven non equilibrium processes. The FSDAM blind prediction, relying on the normality assumption for the annihilation work distributions, ranked fairly well among the submitted blind predictions that were not adjusted with a linear corrections obtained from retrospective data on similar host guest systems. Improved results for FSDAM can be obtained by post-processing the work data assuming mixtures of normal components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.  2
Fig.  3
Fig.  4
Fig.  5
Fig.  6
Fig.  7
Fig.  8
Fig.  9

Similar content being viewed by others

References

  1. Rizzi A, Murkli S, McNeill JN, Yao W, Sullivan M, Gilson MK, Chiu MW, Isaacs L, Gibb BC, Mobley DL, Chodera JD (2018) Overview of the SAMPL6 host-guest binding affinity prediction challenge. https://doi.org/10.1101/371724

    Article  Google Scholar 

  2. Yin J, Henriksen NM, Slochower DR, Shirts MR, Chiu MW, Mobley DL, Gilson MK (2016) Overview of the sampl5 host–guest challenge: are we doingbetter? J Comput Aided Mol Des 31(1):1–9

    Article  Google Scholar 

  3. Muddana HS, Fenley AT, Mobley DL, Gilson MK (2014) The sampl4 host-guest blind prediction challenge: an overview. J Comput Aided Mol Des 28(4):305–317

    Article  CAS  Google Scholar 

  4. Gibb CL, Gibb BC (2014) Binding of cyclic carboxylates to octa-acid deep-cavity cavitand. J Comput Aided Mol Des 28(4):319–325

    Article  CAS  Google Scholar 

  5. Gan H, Gibb BC (2013) Guest-mediated switching of the assembly state of a water-soluble deep-cavity cavitand. Chem Commun 49:1395–1397

    Article  CAS  Google Scholar 

  6. Jordan JH, Gibb BC (2015) Molecular containers assembled through the hydrophobic effect. Chem Soc Rev 44:547–585

    Article  CAS  Google Scholar 

  7. Torrie GM, Valleau JP (1977) Nonphysical sampling distributions in monte carlo free-energy estimation: umbrella sampling. J Comput Phys 23:187–199

    Article  Google Scholar 

  8. Zwanzig RW (1954) High-temperature equation of state by a perturbation method. i. nonpolar gases. J Chem Phys 22:1420–1426

    Article  CAS  Google Scholar 

  9. Kirkwood JG (1935) Statistical mechanics of fluid mixtures. J Chem Phys 3:300–313

    Article  CAS  Google Scholar 

  10. Procacci P, Cardelli C (2014) Fast switching alchemical transformations in molecular dynamics simulations. J Chem Theory Comput 10:2813–2823

    Article  CAS  Google Scholar 

  11. Sandberg RB, Banchelli M, Guardiani C, Menichetti S, Caminati G, Procacci P (2015) Efficient nonequilibrium method for binding free energy calculations in molecular dynamics simulations. J Chem Theory Comput 11(2):423–435

    Article  CAS  Google Scholar 

  12. Procacci P (2016) I. Dissociation free energies of drug-receptor systems via non-equilibrium alchemical simulations: a theoretical framework. Phys Chem Chem Phys 18:14991–15004

    Article  CAS  Google Scholar 

  13. Nerattini F, Chelli R, Procacci P (2016) II. Dissociation free energies in drug-receptor systems via nonequilibrium alchemical simulations: application to the fk506-related immunophilin ligands. Phys Chem Chem Phys 18:15005–15018

    Article  CAS  Google Scholar 

  14. Crooks GE (1998) Nonequilibrium measurements of free energy differences for microscopically reversible markovian systems. J Stat Phys 90:1481–1487

    Article  Google Scholar 

  15. Procacci P (2015) Unbiased free energy estimates in fast nonequilibrium transformations using gaussian mixtures. J Chem Phys 142(15):154117

    Article  Google Scholar 

  16. Procacci P (2017) Primadorac: a free web interface for the assignment of partial charges, chemical topology, and bonded parameters in organic or drug molecules. J Chem Inf Model 57(6):1240–1245

    Article  CAS  Google Scholar 

  17. Procacci P (2016) Hybrid MPI/OpenMP implementation of the ORAC molecular dynamics program for generalized ensemble and fast switching alchemical simulations. J Chem Inf Model 56(6):1117–1121

    Article  CAS  Google Scholar 

  18. Cresco: Centro computazionale di ricerca sui sistemi complessi. Italian National Agency for New Technologies, Energy (ENEA). https://www.cresco.enea.it. Accessed 24 June 2015

  19. Consorzio Interuniversitario del Nord est Italiano Per il Calcolo Automatico (Interuniversity Consortium High Performance Systems). http://www.cineca.it. Accessed 22 Jan 2018

  20. GAFF and GAFF2 are public domain force fields and are part of the AmberTools16 distribution, available for download at http://amber.org internet address. Accessed March 2017. According to the AMBER development team, the improved version of GAFF, GAFF2, is an ongoing poject aimed at ”reproducing both the high quality interaction energies and key liquid properties such as density, heat of vaporization and hydration free energy”. GAFF2 is expected ”to be an even more successful general purpose force field and that GAFF2-based scoring functions will significantly improve the successful rate of virtual screenings.”

  21. Giovannelli E, Procacci P, Cardini G, Pagliai M, Volkov V, Chelli R (2017) Binding free energies of host-guest systems by nonequilibrium alchemical simulations with constrained dynamics: theoretical framework. J Chem Theory Comput 12:5874–5886

    Article  Google Scholar 

  22. Giovannelli E, Cioni M, Procacci P, Cardini G, Pagliai M, Volkov V, Chelli R (2017) Binding free energies of host-guest systems by nonequilibrium alchemical simulations with constrained dynamics: illustrative calculations and numerical validation. J Chem Theory Comput 13:5887–5899

    Article  CAS  Google Scholar 

  23. Wang L, Wu Y, Deng Y, Kim B, Pierce L, Krilov G, Lupyan D, Robinson S, Dahlgren MK, Greenwood J, Romero DL, Masse C, Knight JL, Steinbrecher T, Beuming T, Damm W, Harder E, Sherman W, Brewer M, Wester R, Murcko M, Frye L, Farid R, Lin T, Mobley DL, Jorgensen WL, Berne BJ, Friesner RA, Abel R (2015) Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. J Am Chem Soc 137(7):2695–2703

    Article  CAS  Google Scholar 

  24. Marsili S, Signorini GF, Chelli R, Marchi M, Procacci P (2010) Orac: a molecular dynamics simulation program to explore free energy surfaces in biomolecular systems at the atomistic level. J Comput Chem 31:1106–1116

    CAS  PubMed  Google Scholar 

  25. Gilson MK, Given JA, Bush BL, McCammon JA (1997) The statistical-thermodynamic basis for computation of binding affinities: a critical review. Biophys J 72:1047–1069

    Article  CAS  Google Scholar 

  26. Zhou H-X, Gilson MK (2009) Theory of free energy and entropy in noncovalent binding. Chem Rev 109:4092–4107

    Article  CAS  Google Scholar 

  27. Procacci P, Chelli R (2017) Statistical mechanics of ligand-receptor noncovalent association, revisited: binding site and standard state volumes in modern alchemical theories. J Chem Theory Comput 13(5):1924–1933

    Article  CAS  Google Scholar 

  28. Hermans J, Wang L (1997) Inclusion of loss of translational and rotational freedom in theoretical estimates of free energies of binding. Application to a complex of benzene and mutant t4 lysozyme. J Am Chem Soc 119(11):2707–2714

    Article  CAS  Google Scholar 

  29. Boresch S, Tettinger F, Leitgeb M, Karplus M (2003) Absolute binding free energies: a quantitative approach for their calculation. J Phys Chem B 107(35):9535–9551

    Article  CAS  Google Scholar 

  30. Deng Y, Roux B (2009) Computations of standard binding free energies with molecular dynamics simulations. J Phys Chem B 113:2234–2246

    Article  CAS  Google Scholar 

  31. Luo H, Sharp K (2002) On the calculation of absolute macromolecular binding free energies. Proc Natl Acad Sci USA 99(16):10399–10404

    Article  CAS  Google Scholar 

  32. Procacci P, Marsili S, Barducci A, Signorini GF, Chelli R (2006) Crooks equation for steered molecular dynamics using a nosé-hoover thermostat. J Chem Phys 125:164101

    Article  Google Scholar 

  33. Park S, Schulten K (2004) Calculating potentials of mean force from steered molecular dynamics simulations. J Chem Phys 120(13):5946–5961

    Article  CAS  Google Scholar 

  34. Krishnamoorthy K (2006) Handbook of statistical distributions with applications. Chapman and Hall/CRC, London

    Book  Google Scholar 

  35. Sanders CR (2018) Biomolecular ligand-receptor binding studies: theory, practice, and analysis. Vanderbilt University, Nashville, 2010. https://structbio.vanderbilt.edu/sanders/Binding_Principles_2010.pdf Accessed 22 April 2018

  36. Lauffenburger DA, Linderman JJ (1993) Receptors: models for binding, trafficking, and signaling. Oxford University Press, Oxford

    Google Scholar 

  37. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh ewald method. J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  38. Darden T, Pearlman D, Pedersen LG (1998) Ionic charging free energies: spherical versus periodic boundary conditions. J Chem Phys 109(24):10921–10935

    Article  CAS  Google Scholar 

  39. Jakalian A, Jack DB, Bayly CI (2002) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem 23(16):1623–1641

    Article  CAS  Google Scholar 

  40. Dewar MJ, Zoebisch EG, Healy EF, Stewart JJP (1985) Development and use of quantum mechanical molecular models. 76. Am1: A new general purpose quantum mechanical model. J Am Chem Soc 107(13):3902–3909

    Article  CAS  Google Scholar 

  41. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  42. Parrinello M, Rahman A (1980) Crystal structure and pair potentials: a molecular-dynamics study. Phys Rev Lett 45:1196–1199

    Article  CAS  Google Scholar 

  43. Marchi M, Procacci P (1998) Coordinates scaling and multiple time step algorithms for simulation of solvated proteins in the npt ensemble. J Chem Phys 109:5194–520g2

    Article  CAS  Google Scholar 

  44. Tuckerman M, Berne BJ (1992) Reversible multiple time scale molecular dynamics. J Chem Phys 97:1990–2001

    Article  CAS  Google Scholar 

  45. Procacci P, Paci E, Darden T, Marchi M (1997) Orac: a molecular dynamics program to simulate complex molecular systems with realistic electrostatic interactions. J Comput Chem 18:1848–1862

    Article  CAS  Google Scholar 

  46. Levy RM, Gallicchio E (2004) Agbnp: an analytic implicit solvent model suitable for molecular dynamics simulations and high-resolution modeling. J Comput Chem 25:479–499

    Article  Google Scholar 

  47. Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314:141–151

    Article  CAS  Google Scholar 

  48. Ponti G, Palombi F, Abate D, Ambrosino F, Aprea G, Bastianelli T, Beone F, Bertini R, Bracco G, Caporicci M, Calosso B, Chinnici M, Colavincenzo A, Cucurullo A, Dangelo P, De Rosa M, De Michele P, Funel A, Furini G, Giammattei D, Giusepponi S, Guadagni R, Guarnieri G, Italiano A, Magagnino S, Mariano A, Mencuccini G, Mercuri C, Migliori S, Ornelli P, Pecoraro S, Perozziello A, Pierattini S, Podda S, Poggi F, Quintiliani A, Rocchi A, Scio C, Simoni F, Vita A (2014) The role of medium size facilities in the hpc ecosystem: the case ofthe new cresco4 cluster integrated in the eneagrid infrastructure. In: Proceeding of the International Conference on high performance computing & simulation, Institute of Electrical and Electronics Engineers ( IEEE ) pp 1030–1033

  49. Procacci P, Bizzarri M, Marsili S (2014) Energy-driven undocking (edu-hrem) in solute tempering replica exchange simulations. J Chem Theory Comput 10:439–450

    Article  CAS  Google Scholar 

  50. Note that the PMF route to \(K_d\) still needs the definition of a binding site volume, that is of an ”indicator function” [64,31,25] depending on the relative guest-host coordinates that can distinguish between ”bound” state and ”unbound” state

  51. Beutler TC, Mark AE, van Schaik RC, Gerber PR, van Gunsteren WF (1994) Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations. Chem Phys Lett 222:5229–539

    Article  Google Scholar 

  52. Shenfeld DK, Huafeng X, Eastwood MP, Dror RO, Shaw DE (2009) Minimizing thermodynamic length to select intermediate states for free-energy calculations and replica-exchange simulations. Phys Rev E 80:046705

    Article  Google Scholar 

  53. Naden LN, Shirts MR (2015) Linear basis function approach to efficient alchemical free energy calculations. 2. Inserting and deleting particles with coulombic interactions. J Chem Theory Comput 11:2536–2549

    Article  CAS  Google Scholar 

  54. Anderson TW, Darling DA (1954) A test of goodness of fit. J Am Stat Assoc 49:765–769

    Article  Google Scholar 

  55. Stephens MA (1979) Test of fit for the logistic distribution based on the empirical distribution function. Biometrika 66:591–595

    Article  Google Scholar 

  56. Razali NM, Wah YB (2011) Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. J Stat Model Anal 2:21–33

    Google Scholar 

  57. Islam TU, Tanweer Ul Islam (2017) Stringency-based ranking of normality tests. Commun Stat Simul Comput 46(1):655–668

    Article  Google Scholar 

  58. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the em algorithm. J Royal Stat Soc B 39:1–38

    Google Scholar 

  59. Gupta MR, Chen Y (2011) Theory and use of the EM algorithm. Found Trends Signal Process 4(3):223–296

    Article  Google Scholar 

  60. An EM Fortran90 code is available with the ORAC6 distribution tarball at the ORAC site. www.chim.unifi.it/orac

  61. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wirkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18):3586–3616

    Article  CAS  Google Scholar 

  62. Bennett CH (1976) Efficient estimation of free energy differences from monte carlo data. J Comput Phys 22:245–268

    Article  Google Scholar 

  63. Giovannelli E, Gellini C, Pietraperzia G, Cardini G, Chelli R (2014) Combining path-breaking with bidirectional nonequilibrium simulations to improve efficiency in free energy calculations. J Chem Phys 140(6):064104

    Article  Google Scholar 

  64. Chandler D (1987) Introduction to modern statistical mechanics. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgements

We acknowledge the Partnership for Advance Computing in Europe (PRACE ) for awarding us access to Marconi-Broadwell and Marconi-KNL HPC platforms managed by the CINECA consortium (Italy). A part of the computing resources and the related technical support used for this work have been provided by CRESCO/ ENEAGRID HPC infrastructure and its staff; see http://www.cresco.enea.it for information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piero Procacci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Procacci, P., Guarrasi, M. & Guarnieri, G. SAMPL6 host–guest blind predictions using a non equilibrium alchemical approach. J Comput Aided Mol Des 32, 965–982 (2018). https://doi.org/10.1007/s10822-018-0151-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-018-0151-9

Keywords

Navigation