Skip to main content
Log in

Predicting ligand binding affinity using on- and off-rates for the SAMPL6 SAMPLing challenge

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Interest in ligand binding kinetics has been growing rapidly, as it is being discovered in more and more systems that ligand residence time is the crucial factor governing drug efficacy. Many enhanced sampling methods have been developed with the goal of predicting ligand binding rates (\(k_{\text {on}}\)) and/or ligand unbinding rates (\(k_{\text {off}}\)) through explicit simulation of ligand binding pathways, and these methods work by very different mechanisms. Although there is not yet a blind challenge for ligand binding kinetics, here we take advantage of experimental measurements and rigorously computed benchmarks to compare estimates of \(K_D\) calculated as the ratio of two rates: \(k_{\text {off}}/k_{\text {on}}\). These rates were determined using a new enhanced sampling method based on the weighted ensemble framework that we call “REVO”: Reweighting of Ensembles by Variance Optimization. This is a further development of the WExplore enhanced sampling method, in which trajectory cloning and merging steps are guided not by the definition of sampling regions, but by maximizing trajectory variance. Here we obtain estimates of \(k_{\text {on}}\) and \(k_{\text {off}}\) that are consistent across multiple simulations, with an average log10-scale standard deviation of 0.28 for on-rates and 0.56 for off-rates, which is well within an order of magnitude and far better than previously observed for previous applications of the WExplore algorithm. Our rank ordering of the three host–guest pairs agrees with the reference calculations, however our predicted \(\Delta G\) values were systematically lower than the reference by an average of 4.2 kcal/mol. Using tree network visualizations of the trajectories in the REVO algorithm, and conformation space networks for each system, we analyze the results of our sampling, and hypothesize sources of discrepancy between our \(K_D\) values and the reference. We also motivate the direct inclusion of \(k_{\text {on}}\) and \(k_{\text {off}}\) challenges in future iterations of SAMPL, to further develop the field of ligand binding kinetics prediction and modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. De Ruiter A, Oostenbrink C (2011) Free energy calculations of protein-ligand interactions. Curr Opion Chem Biol 15(4):547–552

    Article  Google Scholar 

  2. Gapsys V, Michielssens S, Peters JH, de Groot BL, Leonov H (2015) Calculation of binding free energies. Methods Mol Biol (Clifton, NJ) 1215:173–209

    Article  CAS  Google Scholar 

  3. Geballe MT, Skillman AG, Nicholls A, Guthrie JP, Taylor PJ (2010) The SAMPL2 blind prediction challenge: introduction and overview. J Comput Aided Mol Des 24(4):259–279

    Article  CAS  Google Scholar 

  4. Rizzi A, Shirts M, Mobley D (2018) SAMPL6. https://github.com/MobleyLab/SAMPL6/blob/master/SAMPLing_instructions.md

  5. Copeland RA (2016) The drug-target residence time model: a 10-year retrospective. Nat Rev Drug Discov 15(February):87–95

    Article  CAS  Google Scholar 

  6. Costa B, Da Pozzo E, Giacomelli C, Barresi E, Taliani S, Da Settimo F, Martini C (2016) TSPO ligand residence time: a new parameter to predict compound neurosteroidogenic efficacy. Sci Rep 6:18164

    Article  CAS  Google Scholar 

  7. Pan AC, Borhani DW, Dror RO, Shaw DE (2013) Molecular determinants of drug-receptor binding kinetics. Drug Discov Today 18(13–14):667–673

    Article  CAS  Google Scholar 

  8. Kokh DB, Amaral M, Bomke J, Grädler U, Musil D, Buchstaller HP, Dreyer MK, Frech M, Lowinski M, Vallée F, Bianciotto M, Rak A, Wade RC (2018) Estimation of drug-target residence times by T-random acceleration molecular dynamics simulations. J Chem Theory Comput 14(7):3859–3869

    Article  CAS  Google Scholar 

  9. Dickson A, Tiwary P, Vashisth H (2017) Kinetics of ligand binding through advanced computational approaches: a review. Curr Top Med Chem 17:2626–2641

    Article  CAS  Google Scholar 

  10. Teo I, Mayne CG, Schulten K, Lelièvre T (2016) Adaptive multilevel splitting method for molecular dynamics calculation of benzamidine-trypsin dissociation time. J Chem Theory Comput 12(6):2983–2989

    Article  CAS  Google Scholar 

  11. Votapka LW, Jagger BR, Heyneman AL, Amaro RE (2017) SEEKR: simulation enabled estimation of kinetic rates, a computational tool to estimate molecular kinetics and its application to trypsin-benzamidine binding. J Phys Chem B 121(15):3597–3606

    Article  CAS  Google Scholar 

  12. Doerr S, De Fabritiis G (2014) On-the-fly learning and sampling of ligand binding by high-throughput molecular simulations. J Chem Theory Comput 10(5):2064–2069

    Article  CAS  Google Scholar 

  13. Buch I, Giorgino T, De Fabritiis G (2011) Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations. Proc Natl Acad Sci USA 108(25):10184–10189

    Article  CAS  Google Scholar 

  14. Plattner N, Noé F (2015) Protein conformational plasticity and complex ligand-binding kinetics explored by atomistic simulations and Markov models. Nat Commun 6:7653

    Article  Google Scholar 

  15. Limongelli V, Bonomi M, Parrinello M (2013) Funnel metadynamics as accurate binding free-energy method. PNAS 110(16):6358–6363

    Article  CAS  Google Scholar 

  16. Dickson A, Lotz S (2017) Multiple ligand unbinding pathways and ligand-induced destabilization revealed by WExplore. Biophys J 112(4):620–629

    Article  CAS  Google Scholar 

  17. Tiwary P, Mondal J, Berne BJ (2017) How and when does an anticancer drug leave its binding site? Sci Adv 3:e1700014

    Article  Google Scholar 

  18. Casasnovas R, Limongelli V, Tiwary P, Carloni P, Parrinello M (2017) Unbinding kinetics of a P38 MAP kinase type II inhibitor from metadynamics simulations. J Am Chem Soc 139(13):4780–4788

    Article  CAS  Google Scholar 

  19. Lotz SD, Dickson A (2018) Unbiased molecular dynamics of 11 min timescale drug unbinding reveals transition state stabilizing interactions. J Am Chem Soc 140(2):618–628

    Article  CAS  Google Scholar 

  20. Dickson A, Brooks CL III (2014) WExplore: hierarchical exploration of high-dimensional spaces using the weighted ensemble algorithm. J Phys Chem B 118(13):3532–3542

    Article  CAS  Google Scholar 

  21. Huber GGA, Kim S (1996) Weighted-ensemble brownian dynamics simulations for protein association reactions. Biophys J 70(1):97–110

    Article  CAS  Google Scholar 

  22. Zuckerman DM, Chong LT (2017) Weighted ensemble simulation: review of methodology, applications, and software. Annu Rev Biophys 46(1):43–57. https://doi.org/10.1146/annurev-biophys-070816-033834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Muddana HS, Varnado CD, Bielawski CW, Urbach AR, Isaacs L, Geballe MT, Gilson MK (2012) Blind prediction of host-guest binding affinities: a new SAMPL3 challenge. J Comput Aided Mol Des 26:475–487

    Article  CAS  Google Scholar 

  24. Biedermann F, Scherman OA (2012) Cucurbit[8]uril mediated donor-acceptor ternary complexes: a model system for studying charge-transfer interactions. J Phys Chem B 116(9):2842–2849

    Article  CAS  Google Scholar 

  25. Gan H, Benjamin CJ, Gibb BC (2011) Nonmonotonic assembly of a deep-cavity cavitand. J Am Chem Soc 133(13):4770–4773

    Article  CAS  Google Scholar 

  26. Eastman P, Swails J, Chodera JD, McGibbon RT, Zhao Y, Beauchamp KA, Wang LP, Simmonett AC, Harrigan MP, Stern CD, Wiewiora RP, Brooks BR, Pande VS (2017) OpenMM 7: rapid development of high performance algorithms for molecular dynamics. PLoS Comput Biol. https://doi.org/10.1371/journal.pcbi.1005659

    Article  Google Scholar 

  27. Dickson A, Warmflash A, Dinner A (2009) Separating forward and backward pathways in nonequilibrium umbrella sampling. J Chem Phys 131(15):154104

    Article  Google Scholar 

  28. Dickson A, Maienschein-Cline M, Tovo-Dwyer A, Hammond JR, Dinner AR (2011) Flow-dependent unfolding and refolding of an RNA by nonequilibrium umbrella sampling. J Chem Theory Comput 7:2710–2720

    Article  CAS  Google Scholar 

  29. Vanden-Eijnden E, Venturoli M (2009) Exact rate calculations by trajectory parallelization and tilting. J Chem Phys 131(4):044120

    Article  Google Scholar 

  30. Suárez E, Lettieri S, Zwier MC, Stringer CA, Subramanian SR, Chong LT, Zuckerman DM (2014) Simultaneous computation of dynamical and equilibrium information using a weighted ensemble of trajectories. J Chem Theory Comput 10(7):2658–2667

    Article  Google Scholar 

  31. Costaouec R, Feng H, Izaguirre J, Darve E (2013) Analysis of the accelerated weighted ensemble methodology. Discrete Continuous Dyn Sys. Supplement:171–181

    Google Scholar 

  32. Hill T (1989) Free energy transduction and biochemical cycle kinetics. Academic Press, New York

    Book  Google Scholar 

  33. Hagberg AA, Schult DA, Swart PJ (2008) Exploring network structure, dynamics, and function using NetworkX. In: Proceedings of the 7th Python in Science Conference (SciPy 2008)

  34. Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. 3rd ICWSM.https://doi.org/10.1136/qshc.2004.010033

    Article  Google Scholar 

  35. Harrigan MP, Sultan MM, Hernández CX, Husic BE, Eastman P, Schwantes CR, Beauchamp KA, McGibbon RT, Pande VS (2017) MSMBuilder: statistical models for biomolecular dynamics. Biophys J 112(1):10–15. https://doi.org/10.1016/j.bpj.2016.10.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dickson AR (2018) CSNAnalysis. https://github.com/ADicksonLab/CSNAnalysis

  37. Cherven K (2013) Network graph analysis and visualization with Gephi. Packt Publishing, Birmingham

    Google Scholar 

  38. Murkli S, McNeill JN, Isaacs L (2018) Cucurbit[8]uril-guest complexes: blinded dataset for the SAMPL6 challenge. Supramol Chem. Submitted

  39. Northrup SH, Allison SA, McCammon JA (1984) Brownian dynamics simulation of diffusion-influenced bimolecular reactions. J Chem Phys 80(4):1517–1524

    Article  CAS  Google Scholar 

  40. Rojnuckarin A, Livesay DR, Subramaniam S (2000) Bimolecular reaction simulation using weighted ensemble Brownian dynamics and the University of Houston Brownian Dynamics Program. Biophys J 79(2):686–693

    Article  CAS  Google Scholar 

  41. Saglam AS, Chong LT (2015) Highly efficient computation of the basal kon using direct simulation of protein-protein association with flexible molecular models. J Phys Chem B 120:117–122

    Article  Google Scholar 

Download references

Funding

The Funding was provided by Division of Mathematical Sciences (1761320).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Dickson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Video 1 (MPG 1.5 MB)

Supplementary material 2 (PDF 14 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dixon, T., Lotz, S.D. & Dickson, A. Predicting ligand binding affinity using on- and off-rates for the SAMPL6 SAMPLing challenge. J Comput Aided Mol Des 32, 1001–1012 (2018). https://doi.org/10.1007/s10822-018-0149-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-018-0149-3

Keywords

Navigation