Skip to main content
Log in

Exploring ensembles of bioactive or virtual analogs of X-ray ligands for shape similarity searching

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Shape similarity searching is a popular approach for ligand-based virtual screening on the basis of three-dimensional reference compounds. It is generally thought that well-defined experimentally determined binding modes of active reference compounds provide the best possible basis for shape searching. Herein, we show that experimental binding modes are not essential for successful shape similarity searching. Furthermore, we show that ensembles of analogs of X-ray ligands—in the absence of these ligands—further improve the search performance of single crystallographic reference compounds. This is even the case if ensembles of virtually generated analogs are used whose activity status is unknown. Taken together, the results of our study indicate that analog ensembles representing fuzzy reference states are effective starting points for shape similarity searching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Varnek A, Tropsha A (2008) Chemoinformatics approaches to virtual screening. Royal Society of Chemistry, Cambridge

    Book  Google Scholar 

  2. Geppert H, Vogt M, Bajorath J (2010) Current trends in ligand-based virtual screening: molecular representations, data mining methods, new application areas, and performance evaluation. J Chem Inf Model 50:205–216

    Article  CAS  PubMed  Google Scholar 

  3. Naylor E, Arredouani A, Vasudevan SR, Lewis AM, Parkesh R, Mizote A, Rosen D, Thomas JM, Izumi M, Ganesan A, Galione A, Churchill GC (2009) Identification of a chemical probe for NAADP by virtual screening. Nat Chem Biol 5:220–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rush TS, Grant JA, Mosyak L, Nicholls A (2005) A shape-based 3-D scaffold hopping method and its application to a bacterial protein–protein interaction. J Med Chem 48:1489–1495

    Article  CAS  PubMed  Google Scholar 

  5. Hawkins PCD, Skillman AG, Nicholls A (2007) Comparison of shape-matching and docking as virtual screening tools. J Med Chem 50:74–82

    Article  CAS  PubMed  Google Scholar 

  6. Myrianthopoulos V, Gaboriaud-Kolar N, Tallant C, Hall M-L, Grigoriou S, Brownlee PM, Fedorov O, Rogers C, Heidenreich D, Wanior M, Drosos N, Mexia N, Savitsky P, Bagratuni T, Kastritis E, Terpos E, Filippakopoulos P, Müller S, Skaltsounis AL, Downs JA, Knapp S, Mikros E (2016) Discovery and optimization of a selective ligand for the switch/sucrose nonfermenting-related bromodomains of polybromo protein-1 by the use of virtual screening and hydration analysis. J Med Chem 59:8787–8803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kaserer T, Rigo R, Schuster P, Alcaro S, Sissi C, Schuster D (2016) Optimized virtual screening workflow for the identification of novel g-quadruplex ligands. J Chem Inf Model 56:484–500

    Article  CAS  PubMed  Google Scholar 

  8. Cappel D, Dixon SL, Sherman W, Duan J (2015) Exploring conformational search protocols for ligand-based virtual screening and 3-D QSAR modeling. J Comput Aided Mol Des 29:165–182

    Article  CAS  PubMed  Google Scholar 

  9. Kirchmair J, Distinto S, Markt P et al (2009) How to optimize shape-based virtual screening: choosing the right query and including chemical information. J Chem Inf Model 49:678–692

    Article  CAS  PubMed  Google Scholar 

  10. Anighoro A, Bajorath J (2017) Compound ranking based on fuzzy three-dimensional similarity improves the performance of docking into homology models of G-protein-coupled receptors. ACS Omega 2:2583–2592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hert J, Willett P, Wilton DJ et al (2005) Enhancing the effectiveness of similarity-based virtual screening using nearest-neighbor information. J Med Chem 48:7049–7054

    Article  CAS  PubMed  Google Scholar 

  12. Willett P (2006) Similarity-based virtual screening using 2D fingerprints. Drug Discov Today 11:1046–1053

    Article  CAS  PubMed  Google Scholar 

  13. Yu X, Geer LY, Han L, Bryant SH (2015) Target enhanced 2D similarity search by using explicit biological activity annotations and profiles. J Cheminform 7:55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hu Y, Furtmann N, Bajorath J (2015) Extension of three-dimensional activity cliff information through systematic mapping of active analogs. RSC Adv 5:43006–43015

    Article  CAS  Google Scholar 

  15. Furtmann N, Hu Y, Bajorath J (2015) Comprehensive analysis of three-dimensional activity cliffs formed by kinase inhibitors with different binding modes and cliff mapping of structural analogues. J Med Chem 58:252–264

    Article  CAS  PubMed  Google Scholar 

  16. Weber J, Achenbach J, Moser D, Proschak E (2013) VAMMPIRE: a matched molecular pairs database for structure-based drug design and optimization. J Med Chem 56:5203–5207

    Article  CAS  PubMed  Google Scholar 

  17. Furtmann N, Hu Y, Gütschow M, Bajorath J (2015) Identification of interaction hot spots in structures of drug targets on the basis of three-dimensional activity cliff information. Chem Biol Drug Des 86:1458–1465

    Article  CAS  PubMed  Google Scholar 

  18. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B et al (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40:D1100–D1107

    Article  CAS  PubMed  Google Scholar 

  19. Hu X, Hu Y, Vogt M, Stumpfe D, Bajorath J (2012) MMP-cliffs: systematic identification of activity cliffs on the basis of matched molecular pairs. J Chem Inf Model 52:1138–1145

    Article  CAS  PubMed  Google Scholar 

  20. Hussain J, Rea C (2010) Computationally efficient algorithm to identify matched molecular pairs (MMPs) in large data sets. J Chem Inf Model 50:339–348

    Article  CAS  PubMed  Google Scholar 

  21. Kunimoto R, Miyao T, Bajorath J (2018) Computational method for estimating progression saturation of analog series. RSC Adv 8:5484–5492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. OEOmega TK version 2.6.7; OpenEye Scientific Software, Santa Fe, NM

  23. OEFF TK version 2.0.1; OpenEye Scientific Software, Santa Fe, NM

  24. ROCS version 3.2.2.2, OpenEye Scientific Software, Santa Fe, NM

  25. Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 55:6582–6594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50:742–754

    Article  CAS  PubMed  Google Scholar 

  27. Gardiner EJ, Gillet VJ, Haranczyk M et al (2009) Turbo similarity searching: effect of fingerprint and dataset on virtual-screening performance. Stat Anal Data Min 2:103–114

    Article  Google Scholar 

Download references

Acknowledgements

We thank the OpenEye Scientific Software, Inc., for providing a free academic license of the OpenEye chemistry toolkit and the ROCS program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Bajorath.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 64 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyao, T., Bajorath, J. Exploring ensembles of bioactive or virtual analogs of X-ray ligands for shape similarity searching. J Comput Aided Mol Des 32, 759–767 (2018). https://doi.org/10.1007/s10822-018-0128-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-018-0128-8

Keywords

Navigation