Advertisement

Journal of Computer-Aided Molecular Design

, Volume 32, Issue 5, pp 607–622 | Cite as

Binding free energy calculations to rationalize the interactions of huprines with acetylcholinesterase

  • Érica C. M. Nascimento
  • Mónica Oliva
  • Juan Andrés
Article

Abstract

In the present study, the binding free energy of a family of huprines with acetylcholinesterase (AChE) is calculated by means of the free energy perturbation method, based on hybrid quantum mechanics and molecular mechanics potentials. Binding free energy calculations and the analysis of the geometrical parameters highlight the importance of the stereochemistry of huprines in AChE inhibition. Binding isotope effects are calculated to unravel the interactions between ligands and the gorge of AChE. New chemical insights are provided to explain and rationalize the experimental results. A good correlation with the experimental data is found for a family of inhibitors with moderate differences in the enzyme affinity. The analysis of the geometrical parameters and interaction energy per residue reveals that Asp72, Glu199, and His440 contribute significantly to the network of interactions between active site residues, which stabilize the inhibitors in the gorge. It seems that a cooperative effect of the residues of the gorge determines the affinity of the enzyme for these inhibitors, where Asp72, Glu199, and His440 make a prominent contribution.

Keywords

Huprines Binding free energy calculation QM/MM Stacking interactions Binding isotope effect 

Notes

Acknowledgements

We thank Prof P. Camps, Prof. F.J. Luque, and Prof. D. Muñoz-Torrero for interesting comments on the paper. The authors acknowledge the financial support of the following agencies: Generalitat Valenciana for PrometeoII/2014/022, Ministerio de Economia y Competitividad, project CTQ2015-65207-P, Universitat Jaume I for project UJI-B2016-25. E.C.M. Nascimento is grateful to the Generalitat Valencia for Santiago Grisolia program 2011/040. We also wish to thank the Servei d’Informática, Universitat Jaume I, for the generous allocation of computer time.

Compliance with ethical standards

Conflict of interest

There are no conflicts of interest to declare.

Supplementary material

10822_2018_114_MOESM1_ESM.docx (34.7 mb)
Supplementary material 1 (DOCX 35579 KB)

References

  1. 1.
    Bossy-Wetzel E, Schwarzenbacher R, Lipton SA (2004) Molecular pathways to neurodegeneration. Nat Med 10(7):S2–S9CrossRefGoogle Scholar
  2. 2.
    Bartus R, Dean R, Beer B, Lippa A (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217(4558):408–414CrossRefGoogle Scholar
  3. 3.
    Dunnett SB, Fibiger HC (1993) Role of forebrain cholinergic systems in learning and memory—relevance to the cognitive deficits of aging and alzheimer dementia. In: Cuello AC (ed) Cholinergic function and dysfunction, progress in brain research, vol 98. Elsevier Science Publ B V, Amsterdam, pp 413–420CrossRefGoogle Scholar
  4. 4.
    Weinstock M (1997) Possible role of the cholinergic system and disease models. J Neural Transm-Suppl 49:93–102Google Scholar
  5. 5.
    Rang HP, Dale MM, Ritter JM, Flower RJ, Henderson G (2012) Rang & Dale’s pharmacology, 7th edn. Elsevier, EdinburghGoogle Scholar
  6. 6.
    Bar-On P, Millard CB, Harel M, Dvir H, Enz A, Sussman JL, Silman I (2002) Kinetic and structural studies on the interaction of cholinesterases with the anti-alzheimer drug rivastigmine. Biochemistry 41(11):3555–3564CrossRefGoogle Scholar
  7. 7.
    Harel M, Schalk I, Ehretsabatier L, Bouet F, Goeldner M, Hirth C, Axelsen PH, Silman I, Sussman JL (1993) Quaternary ligand-binding to aromatic residues in the active-site gorge of acetylcholinesterase. Proc Natl Acad Sci USA 90(19):9031–9035CrossRefGoogle Scholar
  8. 8.
    Kryger G, Silman I, Sussman JL (1999) Structure of acetylcholinesterase complexed with E2020 (Aricept (R)): implications for the design of new anti-Alzheimer drugs. Structure 7(3):297–307CrossRefGoogle Scholar
  9. 9.
    Greenblatt HM, Kryger G, Lewis T, Silman I, Sussman JL (1999) Structure of acetylcholinesterase complexed with (-)-galantamine at 2.3 angstrom resolution. FEBS Lett 463(3):321–326CrossRefGoogle Scholar
  10. 10.
    Gilson MK, Zhou HX (2007) Calculation of protein-ligand binding affinities. In: Annual review of biophysics and biomolecular structure, vol 36. Annual Reviews, Palo Alto, pp 21–42Google Scholar
  11. 11.
    Sham YY, Chu ZT, Tao H, Warshel A (2000) Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease. Proteins-Struct Funct Genet 39(4):393–407CrossRefGoogle Scholar
  12. 12.
    Hansen N, van Gunsteren WF (2014) Practical aspects of free-energy calculations: a review. J Chem Theory Comput 10(7):2632–2647CrossRefGoogle Scholar
  13. 13.
    Wlodek ST, Antosiewicz J, McCammon JA, Straatsma TP, Gilson MK, Briggs JM (1996) Binding of tacrine and 6-chlorotacrine by acetylcholinesterase. Biopolymers 38(1):109–117CrossRefGoogle Scholar
  14. 14.
    Camps P, El Achab R, Görbig DM, Morral J, Muñoz-Torrero D, Badia A, Baños JE, Vivas NM, Barril X, Orozco M, Luque FJ (1999) Synthesis, in vitro pharmacology, and molecular modelling of very potent tacrine-huperzine A hybrids as acetylcholinesterase inhibitors of potential interest for the treatment of alzheimer’s disease. J Med Chem 42:3227–3242CrossRefGoogle Scholar
  15. 15.
    Barril X, Orozco M, Luque FJ (1999) Predicting relative binding free energies of tacrine-huperzine A hybrids as inhibitors of acetylcholinesterase. J Med Chem 42(25):5110–5119CrossRefGoogle Scholar
  16. 16.
    Camps P, El Achab R, Morral J, Muñoz-Torrero D, Badia A, Baños JE, Vivas NM, Barril X, Orozco M, Luque FJ (2000) New tacrine-huperzine A hybrids (huprines): highly potent tight-binding acetylcholinesterase inhibitors of interest for the treatment of alzheimer’s disease. J Med Chem 43(24):4657–4666CrossRefGoogle Scholar
  17. 17.
    Camps P, Gomez E, Muñoz-Torrero D, Badia A, Vivas NM, Barril X, Orozco M, Luque FJ (2001) Synthesis, in vitro pharmacology, and molecular modeling of syn-huprines as acetylcholinesterase inhibitors. J Med Chem 44(26):4733–4736CrossRefGoogle Scholar
  18. 18.
    Barril X, Gelpi JL, Lopez JM, Orozco M, Luque FJ (2001) How accurate can molecular dynamics/linear response and Poisson-Boltzmann/solvent accessible surface calculations be for predicting relative binding affinities? acetylcholinesterase huprine inhibitors as a test case. Theor Chem Acc 106(1–2):2–9CrossRefGoogle Scholar
  19. 19.
    Dvir H, Wong DM, Harel M, Barril X, Orozco M, Luque FJ, Muñoz-Torrero D, Camps P, Rosenberry TL, Silman I, Sussman JL (2002) 3D structure of Torpedo californica acetylcholinesterase complexed with huprine X at 2.1 Å resolution: kinetic and molecular dynamic correlates. Biochemistry 41(9):2970–2981CrossRefGoogle Scholar
  20. 20.
    Camps P, Gomez E, Muñoz-Torrero D, Badia A, Clos MV, Curutchet C, Muñoz-Muriedas J, Luque FJ (2006) Binding of 13-amidohuprines to acetylcholinesterase: exploring the ligand-induced conformational change of the Gly117-Gly118 peptide bond in the oxyanion hole. J Med Chem 49(23):6833–6840CrossRefGoogle Scholar
  21. 21.
    Viayna E, Gomez T, Galdeano C, Ramirez L, Ratia M, Badia A, Clos MV, Verdaguer E, Junyent F, Camins A, Pallas M, Bartolini M, Mancini F, Andrisano V, Arce MP, Rodriguez-Franco MI, Bidon-Chanal A, Luque FJ, Camps P, Muñoz-Torrero D (2010) Novel huprine derivatives with inhibitory activity toward beta-amyloid aggregation and formation as disease-modifying anti-alzheimer drug candidates. ChemMedChem 5(11):1855–1870CrossRefGoogle Scholar
  22. 22.
    Nascimento ECM, Oliva M, Swiderek K, Martins JBL, Andrés J (2017) Binding analysis of some classical acetylcholinesterase inhibitors: insights for a rational design using free energy perturbation method calculations with QM/MM MD simulations. J Chem Inf Model 57:958–976CrossRefGoogle Scholar
  23. 23.
    Camps P, Cusack B, Mallender WD, Achab RE, Morral J, Muñoz-Torrero D, Rosenberry TL (2000) Huprine X is a novel high-affinity inhibitor of acetylcholinesterase that is of interest for treatment of alzheimer’s disease. Mol Pharmacol 57(2):409–417Google Scholar
  24. 24.
    Muñoz-Torrero D, Camps P (2008) Huprines for alzheimer’s disease drug development. Expert Opin Drug Discov 3(1):65–81CrossRefGoogle Scholar
  25. 25.
    Roman S, Vivas NM, Badia A, Clos MV (2002) Interaction of a new potent anticholinesterasic compound (+/-) huprine X with muscarinic receptors in rat brain. Neurosci Lett 325(2):103–106CrossRefGoogle Scholar
  26. 26.
    Roman S, Badia A, Camps P, Clos MV (2004) Potentiation effects of (+/-)huprine X, a new acetylcholinesterase inhibitor, on nicotinic receptors in rat cortical synaptosomes. Neuropharmacology 46(1):95–102CrossRefGoogle Scholar
  27. 27.
    Ratia M, Gimenez-Llort L, Camps P, Muñoz-Torrero D, Perez B, Clos MV, Badia A (2013) Huprine X and huperzine A improve cognition and regulate some neurochemical processes related with alzheimer’s disease in triple transgenic mice (3xTg-AD). Neurodegener Dis 11(3):129–140CrossRefGoogle Scholar
  28. 28.
    Shirts MR, Mobley DL, Chodera JD (2007) Alchemical free energy calculations: ready for prime time? Annu Rep Comput Chem 3:41–59CrossRefGoogle Scholar
  29. 29.
    Wang L, Wu Y, Deng Y, Kim B, Pierce L, Krilov G, Lupyan D, Robinson S, Dahlgren MK, Greenwood J, Romero DL, Masse C, Knight JL, Steinbrecher T, Beuming T, Damm W, Harder E, Sherman W, Brewer M, Wester R, Murcko M, Frye L, Farid R, Lin T, Mobley DL, Jorgensen WL, Berne BJ, Friesner RA, Abel R (2015) Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. J Am Chem Soc 137(7):2695–2703CrossRefGoogle Scholar
  30. 30.
    Schramm VL (2007) Binding isotope effects: boon and bane. Curr Opin Chem Biol 11(5):529–536CrossRefGoogle Scholar
  31. 31.
    Holm L, Park J (2000) DaliLite workbench for protein structure comparison. Bioinformatics 16(6):566–567CrossRefGoogle Scholar
  32. 32.
    Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791CrossRefGoogle Scholar
  33. 33.
    Field MJ (1999) A practical introduction to the simulation of molecular systems. Cambridge University Press, CambridgeGoogle Scholar
  34. 34.
    Field MJ, Albe M, Bret C, Proust-de Martin F, Thomas A (2000) The dynamo library for molecular simulations using hybrid quantum mechanical and molecular mechanical potentials. J Comput Chem 21(12):1088–1100CrossRefGoogle Scholar
  35. 35.
    Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc 107(13):3902–3909CrossRefGoogle Scholar
  36. 36.
    Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118(45):11225–11236CrossRefGoogle Scholar
  37. 37.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935CrossRefGoogle Scholar
  38. 38.
    Świderek K, Martí S, Moliner V (2012) Theoretical studies of HIV-1 reverse transcriptase inhibition. Phys Chem Chem Phys 14(36):12614–12624CrossRefGoogle Scholar
  39. 39.
    Krzemińska A, Paneth P, Moliner V, Świderek K (2015) Binding isotope effects as a tool for distinguishing hydrophobic and hydrophilic binding sites of HIV-1 RT. J Phys Chem B 119(3):917–927CrossRefGoogle Scholar
  40. 40.
    Koellner G, Kryger G, Millard CB, Silman I, Sussman JL, Steiner T (2000) Active-site gorge and buried water molecules in crystal structures of acetylcholinesterase from Torpedo californica. J Mol Biol 296(2):713–735CrossRefGoogle Scholar
  41. 41.
    Henchman RH, McCammon JA (2002) Structural and dynamic properties of water around acetylcholinesterase. Protein Sci 11(9):2080–2090CrossRefGoogle Scholar
  42. 42.
    Henchman RH, Tai KS, Shen TY, McCammon JA (2002) Properties of water molecules in the active site gorge of acetylcholinesterase from computer simulation. Biophys J 82(5):2671–2682CrossRefGoogle Scholar
  43. 43.
    Ramos ASF, Techert S (2005) Influence of the water structure on the acetylcholinesterase efficiency. Biophys J 89(3):1990–2003CrossRefGoogle Scholar
  44. 44.
    Martín-Santamaría S, Muñoz-Muriedas J, Luque FJ, Gago F (2004) Modulation of binding strength in several classes of active site inhibitors of acetylcholinesterase studied by comparative binding energy analysis. J Med Chem 47(18):4471–4482CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departament de Química Física i AnalíticaUniversitat Jaume ICastellónSpain

Personalised recommendations