Skip to main content
Log in

Biomolecular force fields: where have we been, where are we now, where do we need to go and how do we get there?

  • Perspective
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

In this perspective, we review the theory and methodology of the derivation of force fields (FFs), and their validity, for molecular simulations, from their inception in the second half of the twentieth century to the improved representations at the end of the century. We examine the representations of the physics embodied in various force fields, their accuracy and deficiencies. The early days in the 1950s and 60s saw FFs first introduced to analyze vibrational spectra. The advent of computers was soon followed by the first molecular mechanics machine calculations. From the very first papers it was recognized that the accuracy with which the FFs represented the physics was critical if meaningful calculated structural and thermodynamic properties were to be achieved. We discuss the rigorous methodology formulated by Lifson, and later Allinger to derive molecular FFs, not only obtain optimal parameters but also uncover deficiencies in the representation of the physics and improve the functional form to account for this physics. In this context, the known coupling between valence coordinates and the importance of coupling terms to describe the physics of this coupling is evaluated. Early simplified, truncated FFs introduced to allow simulations of macromolecular systems are reviewed and their subsequent improvement assessed. We examine in some depth: the basis of the reformulation of the H-bond to its current description; the early introduction of QM in FF development methodology to calculate partial charges and rotational barriers; the powerful and abundant information provided by crystal structure and energetic observables to derive and test all aspects of a FF including both nonbond and intramolecular functional forms; the combined use of QM, along with crystallography and lattice energy calculations to derive rotational barriers about ɸ and ψ; the development and results of methodologies to derive “QM FFs” by sampling the QM energy surface, either by calculating energies at hundreds of configurations, or by describing the energy surface by energies, first and second derivatives sampled over the surface; and the use of the latter to probe the validity of the representations of the physics, reveal flaws and assess improved functional forms. Research demonstrating significant effects of the flaws in the use of the improper torsion angle to represent out of plane deformations, and the standard Lorentz–Berthelot combining rules for nonbonded interactions, and the more accurate descriptions presented are also reviewed. Finally, we discuss the thorough studies involved in deriving the 2nd generation all-atom versions of the CHARMm, AMBER and OPLS FFs, and how the extensive set of observables used in these studies allowed, in the spirit of Lifson, a characterization of both the abilities, but more importantly the deficiencies in the diagonal 12-6-1 FFs used. The significant contribution made by the extensive set of observables compiled in these papers as a basis to test improved forms is noted. In the following paper, we discuss the progress in improving the FFs and representations of the physics that have been investigated in the years following the research described above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

AG:

Arithmetic–geometric

Ala:

Alanine

AMBER:

Assisted model building with energy refinement

AMOEBA:

Atomic multipole optimized energetics for biomolecular applications

BNS:

Ben Naim–Stillinger

CFF:

Consistent force field

CHARMM:

Chemistry at HARvard Macromolecular Mechanics

CNDO:

Complete neglect of differential overlap

COMPASS:

Condensed-phase optimized molecular potentials for atomistic simulation studies

CVFF:

Consistent valence force field

DFT:

Density functional theory

ECEPP:

Empirical conformational energy program for peptides

EHT:

Extended Huckel theory

FF:

Force field

FQ:

Fluctuating charges

Gly:

Glycine

GROMOS:

GROningen MOlecular Simulation

Hyp:

Hydroxyproline

LCAO:

Linear combination of atomic orbitals

LJ:

Lennard-Jones

LSQ:

Least squares

MC:

Monte Carlo

MCMS FF:

Momany, Carruthers, McGuire, and Scheraga Force Field

MCY:

Matsuoka–Clementi–Yoshimine

MD:

Molecular dynamics

MDDR:

MDL drug data report

MDL:

Molecular design limited

MM:

Molecular mechanics

MMFF:

Merck molecular force field

NMA:

N-methylacetamide

OPLS:

Optimized potential for liquid simulations

OPLS-AA:

OPLS-AA/L OPLS all atom FF (L for LMP2)

PCILO:

Perturbative configuration interaction using localized orbitals

PDB:

Protein data base

PEFC:

Potential energy function consortium (Biosym)

QCPE:

Quantum chemistry program exchange

QDF:

Quantum derivative fitting

QDP:

Charge dependent polarizability

QM:

Quantum mechanics

RESP:

Restrained electrostatic potential

RMS:

Root mean square

RMSD:

Root mean square deviation

SCF-LCAO-MO:

Self-consistent field-linear combination of atomic-molecular orbital (wave function)

SDFF:

Spectroscopically determined force fields (for macromolecules)

SPC:

Simple point charge (water model)

ST2:

Four point water model replacing Ben-Naim Stillinger (BNS) model

STO:

Slater-type atomic orbitals

TIP3P:

Transferable intermolecular potential (functions for water, alcohols and ethers)

TTBM:

Tri-tert-butylmethane

UB:

Urey–Bradley

VDW:

van der Waals

VFF:

Valence force field

WH:

Waldman–Hagler

References

  1. Hofmann AW (1865) On the combining power of atoms. Proc R Inst 4:401–430

    Google Scholar 

  2. Pasteur L (1848) Recherches sur les relations qui peuvent exister entre la forme cristalline, la composition chimique, et le sens de la polarisation rotatoire. Anal Chim Phys 24:442–459

    Google Scholar 

  3. Le Bel JA (1874). Bull Soc Chim Fr 22:335–347

    Google Scholar 

  4. van’t Hoff JH (1874) Sur les formules de Structure dans l’Espace. Arch Neerl Sci Exactes Nat 9:1–10

    Google Scholar 

  5. Dreiding VAS (1959) Einfache molekularmodelle. Helv Chim Acta 48:1339–1344

    Article  Google Scholar 

  6. Koltun WL (1965) Precision space-filling atomic models. Biopolymers 3:665–679

    Article  CAS  PubMed  Google Scholar 

  7. Larson GO (1964) Atomic and molecular models made from vinyl covered wire. J Chem Educ 41:219

    Article  CAS  Google Scholar 

  8. Bernal JD, Fowler RH (1933) A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J Chem Phys 1:515–548

    Article  CAS  Google Scholar 

  9. Wilson EBJ (1939) A method of obtaining the expanded secular equation for the vibration frequencies of a molecule. J Chem Phys 7:1047–1052

    Article  CAS  Google Scholar 

  10. Barton DHR (1946) Interactions between non-bonded atoms, and the structure of cis-decalin. J Chem Soc 174:340–342

    Google Scholar 

  11. Mason EA, Kreevoy MM (1955) A simple model for barriers to internal rotation. J Am Chem Soc 77:5808–5814

    Article  CAS  Google Scholar 

  12. Pitzer KS, Donath WE (1959) Conformations and strain energy of cyclopentane and its derivatives. J Am Chem Soc 81:3213–3218

    Article  CAS  Google Scholar 

  13. Hendrickson James B (1961) Molecular geometry I. Machine computation of the common rings. J Am Chem Soc 83:4537–4547

    Article  Google Scholar 

  14. Wilson EBJ, Decius JC, Cross PC (1955) Molecular vibrations: the theory of infrared and Raman vibrational spectra. McGraw-Bill, New York

    Google Scholar 

  15. Urey HC, Bradley CA (1931) The vibrations of pentatonic tetrahedral molecules. Phys Rev 38:1969

    Article  CAS  Google Scholar 

  16. Simanouti T (1949) The normal vibrations of polyatomic molecules as treated by Urey–Bradley field. J Chem Phys 17:245–248

    Article  CAS  Google Scholar 

  17. Dennison DM (1931) The infrared spectra of polyatomic molecules part I. Rev Mod Phys 3:280–345

    Article  CAS  Google Scholar 

  18. Cross PC, Van Vleck JH (1933) Molecular vibrations of three particle systems with special applications to the ethyl halides and ethyl alcohol. J Chem Phys 1:350–356

    Article  CAS  Google Scholar 

  19. Snyder RG, Schachtschneider JH (1963) Vibrational analysis of the n-paraffins-I. Assignments of infrared bands in the spectra C3H8 through n-C19H40 Spectrochim Acta 19:85–116

    Article  CAS  Google Scholar 

  20. Schachtschneider JH, Snyder RG (1963) Vibrational analysis of the n-paraffins-II. Normal co-ordinate calculations. Spectrochim Acta 19:117–168

    Article  CAS  Google Scholar 

  21. Williams JE, Stang PJ, Schleyer PVR (1968) Physical organic chemistry: quantitative conformational analysis; calculation methods. Annu Rev Phys Chem 19:531–558

    Article  CAS  Google Scholar 

  22. Scott RA, Scheraga HA (1966) Conformational analysis of macromolecules. I. Ethane, propane, n-butane, and n-pentane. Biopolymers 4:237–238

    Article  CAS  Google Scholar 

  23. Scott RA, Scheraga HA (1966) Conformational analysis of macromolecules. II. The rotational isomeric states of the normal hydrocarbons. J Chem Phys 44:3054–3069

    Article  CAS  Google Scholar 

  24. Jones JE (1924) On the determination of molecular fields-II. From the equation of state of a gas. Proc R Soc London Ser A 106:463–477

    Article  CAS  Google Scholar 

  25. Buckingham RAA (1938) The classical equation of state of gaseous helium, neon and argon. Proc R Soc London Ser A 168:264–283

    Article  CAS  Google Scholar 

  26. Lifson S, Warshel A (1968) Consistent force field for calculations of conformations, vibrational spectra, and enthalpies of cycloalkane and n-alkane molecules. J Chem Phys 49:5116

    Article  CAS  Google Scholar 

  27. Waldman M, Hagler ATT (1993) New combining rules for rare-gas van der Waals parameters. J Comput Chem 14:1077–1084

    Article  CAS  Google Scholar 

  28. Hill TL (1946) On steric effects a reactive potential for hydrocarbons with intermolecular interactions on steric effects. J Chem Phys 14:465

    Article  CAS  Google Scholar 

  29. Westheimer FH, Mayer JE (1946) The theory of the racemization of optically active derivatives of diphenyl. J Chem Phys 14:733–738

    Article  CAS  Google Scholar 

  30. Dostrovsky BI, Hughes ED, Ingold CK (1946) Mechanism of substitution at a saturated carbon atom.I. The role of steric hindrance. J Chem Soc 173–194

  31. Westheimer FH (1956) In: Newman MS (ed) Steric effects in organic chemistry, Chap. 12. Wiley, Hoboken

    Google Scholar 

  32. Allinger NL (1959) Conformational analysis. III Application to some medium ring compounds. J Am Chem Soc 81:5727–5733

    Article  CAS  Google Scholar 

  33. Wiberg KB (1965) A scheme for strain energy minimization. Application to the cycloalkanes. J Am Chem Soc 87:1070–1078

    Article  CAS  Google Scholar 

  34. Edsall JT et al (1966) A proposal of standard conventions and nomenclature for description of polypeptide conformation. J Biol Chem 241:1004–1008

    CAS  PubMed  Google Scholar 

  35. Ramachandran GN, Ramakrishnan C, Sasisekharan V (1963) Stereochemistry of polypeptide chain configurations. J Mol Biol 7:95–99

    Article  CAS  PubMed  Google Scholar 

  36. Ramakrishnan C, Ramachandran GN (1965) Stereochemical criteria for polypeptide and protein chain conformation II. Allowed conformations for a pair of peptide units. Biophys J 5:909–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ramachandran GN, Venkatachalam CM, Krimm S (1966) Stereochemical criteria for polypeptide and protein chain conformations III. Helical and hydrogen-bonded polypepide chains. Biophys J 6:849–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. De Santis P, Giglio E, Liquori AM, Ripamonti A (1965) van der Waals interaction and the stability of helical polypeptide chains. Nature 206:456–458

    Article  PubMed  Google Scholar 

  39. Brant DA, Flory PJ (1965) The configuration of random polypeptide chains. II. Theory. J Am Chem Soc 87:2791–2800

    Article  CAS  Google Scholar 

  40. Scott RA, Scheraga HA (1965) Method for calculating internal rotation barriers. J Chem Phys 42:2209

    Article  CAS  PubMed  Google Scholar 

  41. Scott RA, Scheraga HA (1966) Conformational analysis of macromolecules. III. Helical structures of polyglycine and poly-l-alanine. J Chem Phys 45:2091–2101

    Article  CAS  Google Scholar 

  42. Momany FA, McGuire RF, Yan JF, Scheraga HA (1970) Energy parameters in polypeptides. 3. Semiempirical molecular orbital calculations for hydrogen-bonded model peptides. J Phys Chem 74:2424–2438

    Article  CAS  PubMed  Google Scholar 

  43. Lippincott ER, Schroeder R (1955) One-dimensional model of the hydrogen bond. J Chem Phys 23:1099

    Article  CAS  Google Scholar 

  44. Schroeder R, Lippincott ER (1957) Potential function model of hydrogen bonds. II. J Phys Chem 61:921–928

    Article  CAS  Google Scholar 

  45. Moulton WG, Kromhout RA (1956) Nuclear magnetic resonance: structure of the amino group. II. J Chem Phys 25:34–37

    Article  CAS  Google Scholar 

  46. Chidambaram R, Balasubramanian R, Ramachandran GN (1970) Potential functions for hydrogen bond interactions I. A modified Lippincott–Schroeder potential function for NH–O interaction between peptide groups. Biochim Biophys Acta 221:182–195

    Article  CAS  PubMed  Google Scholar 

  47. Perutz MF et al (1960) Structure of haemoglobin—3-dimensional fourier synthesis At 5.5-Å resolution, obtained by X-ray analysis. Nature 185:416–422

    Article  CAS  PubMed  Google Scholar 

  48. Kendrew JC (1961) Three-dimensional structure of a protein molecule—way in which chain of amino acid units in a protein molecule is coiled and folded in space has been worked out for first time—protein is myoglobin, molecule of which contains 2,600 atoms. Sci Am 205:96

    Article  CAS  PubMed  Google Scholar 

  49. Lifson S (1972) In: Jaenicke R, Helmreich E (eds) Protein–proptein interactions. Springer, New York, pp 3–16

    Chapter  Google Scholar 

  50. Lifson S (1973) Recent developments in consistent force field calulations. Dyn Asp Conform Chang Biol Macromol 421–430

  51. Bixon M, Lifson S (1967) Potential functions and conformations. Cycloalkanes Tetrahedr 23:769–784

    Article  CAS  Google Scholar 

  52. Warshel A, Lifson S (1969) An empirical function for second neighbor interactions and its effect on vibrational modes and other properties of cyclo- and n-alkanes. Chem Phys Lett 4:255–256

    Article  CAS  Google Scholar 

  53. Warshel A, Levitt M, Lifson S (1970) Consistent force field for calculation of vibrational spectra and conformations of some amides and lactam rings. J Mol Spectrosc 33:84–99

    Article  CAS  Google Scholar 

  54. Warshel A, Lifson S (1970) Consistent force field calculations. II. Crystal structures, sublimation energies, molecular and lattice vibrations, molecular conformations, and enthalpies of alkanes. J Chem Phys 53:582–594

    Article  CAS  Google Scholar 

  55. Ermer O, Lifson S (1973) Consistent force field calculations. III. Vibrations, conformations, and heats of hydrogenation of nonconjugated olefins. J Am Chem Soc 95:4121–4132

    Article  CAS  Google Scholar 

  56. Ypma TJ (1995) Historical development of the Newton–Raphson method. SIAM Rev 37:531–551

    Article  Google Scholar 

  57. Hirschfelder JO, Curtiss CF, Bird RB (1954) Molecular theory of gases and liquids. Wiley, Hoboken

    Google Scholar 

  58. Hagler AT, Stern PS, Lifson S, Ariel S (1979) Urey–Bradley force field, valence force field, and ab initio study of intramolecular forces in tri-tert-butylmethane and isobutane. J Am Chem Soc 101:813–819

    Article  CAS  Google Scholar 

  59. Morse PM (1929) Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys Rev 34:57–64

    Article  CAS  Google Scholar 

  60. Levitt M, Lifson S (1969) Refinement of protein conformations using a macromolecular energy minimization procedure. J Mol Biol 46:269–279

    Article  CAS  PubMed  Google Scholar 

  61. Momany FA, Vanderkooi G, Scheraga HA (1968) Determination of intermolecular potentials from crystal data. I. General theory and application to crystallne benzene at several temperatures. Proc Natl Acad Sci USA 61:429–436

    Article  CAS  PubMed  Google Scholar 

  62. McGuire RF et al (1971) Determination of intermolecular potentials from crystal data. II. Crystal packing with application to poly(amino acids). Macromolecules 4:112–124

    Article  CAS  Google Scholar 

  63. Momany FA, Carruthers LM, McGuire RF, Scheraga HA (1974) Intermolecular potentials from crystal data. III. Determination of empirical potentials and applications to the packing configurations and lattice energies in crystals of hydrocarbons, carboxylic acids, amines, and amides. J Phys Chem 78:1595–1620

    Article  CAS  Google Scholar 

  64. Momany FA, Carruthers LM, Scheraga HA (1974) Intermolecular potentials from crystal data. IV. Application of empirical potentials to the packing configurations and lattice energies in crystals of amino acids. J Phys Chem 78:1621–1630

    Article  CAS  Google Scholar 

  65. Pople J, Beveridge D (1970) Approximate molecular orbital theory. McGraw Hill, New York

    Google Scholar 

  66. Momany FA, McGuire RF, Burgess AW, Scheraga HA (1975) Energy parameters in polypeptides.7. Geometric parameters, partial atomic charges, nonbonded interactions, hydrogen-bond interactions, and intrinsic torsional potentials for naturally occurring amino-acids. J Phys Chem 79:2361–2381

    Article  CAS  Google Scholar 

  67. Nemethy G, Pottle MS, Scheraga HA (1983) Energy parameters in peptides. 9. Updating of geometrical parameters, nonbonded interactions, and hydrogen bond interactions for the naturally occurring amino acids. J Phys Chem 87:1883–1887

    Article  CAS  Google Scholar 

  68. Nemethy G et al (1992) Energy parameters in polypeptldes. 10. Improved geometrical parameters and nonbonded interactions for use in the ECEPP/3 algorithm, with appllcatlon to proline-containing peptides. J Phys Chem 96:6472–6484

    Article  CAS  Google Scholar 

  69. Allinger NL, Miller MA, Vancatledge FA, Hirsch JA (1967) Conformational analysis. LVII. The calculation of the conformational structures of hydrocarbons by the Westheimer–Hendrickson–Wiberg method. J Am Chem Soc 89:4345–4357

    Article  CAS  Google Scholar 

  70. Allinger NL, Tribble MT, Miller MA, Wertz DH (1971) Conformational analysis. LXIX. An improved calculations of the structures and energies of hydrocarbons. J Am Chem Soc 93:1637–1648

    Article  CAS  Google Scholar 

  71. Allinger NL (1976) Calculation of molecular structure and energy by force-field methods. Adv Phys Org Chem 13:1–82

    CAS  Google Scholar 

  72. Allinger NL (1977) Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms. J Am Chem Soc 99:8127–8134

    Article  CAS  Google Scholar 

  73. Allinger NL, Hickey MJ (1975) Conformational analysis CVIII. The calculation of the structures and energies of alkanethiols and thiaalkanes by the molecular mechanics method. J Am Chem Soc 97:5167–5177

    Article  CAS  Google Scholar 

  74. Allinger NL, Hickey MJ, Kao J (1976) Conformational analysis CXI. The calculation of the structures and energies of disulfides by the molecular mechanics method. J Am Chem Soc 98:2741–2745

    Article  CAS  Google Scholar 

  75. Allinger NL, Kao J (1976) Conformational analysis XCIV. Molecular mechanics studies of sulfoxides. Tetrahedron 32:529–536

    Article  CAS  Google Scholar 

  76. Allinger NL, Chung DY (1976) Conformational analysis. 118. Application of the molecular-mechanics method to alcohols and ethers. J Am Chem Soc 98:6798–6803

    Article  CAS  Google Scholar 

  77. Allinger NL, Chang SHM (1977) Conformational analysis—CXXIII. Tetrahedron 33:1561–1567

    Article  CAS  Google Scholar 

  78. Williams DE (1966) Nonbonded potential parameters derived from crystalline aromatic hydrocarbons. J Chem Phys 45:3770–3778

    Article  CAS  Google Scholar 

  79. Williams DE (1967) Nonbonded potential parameters derived from crystalline hydrocarbons. J Chem Phys 47:4680–4684

    Article  CAS  Google Scholar 

  80. Kitaigorodskii AI (1965) The principle of close packing and the condition of thermodynamic stability of organic crystals. Acta Crystallogr 18:585–590

    Article  CAS  Google Scholar 

  81. Kitaigorodskii AI (1968) Studies on organic chemical crystallography in USSR. Sov Phys Crystallogr USSR 12:692

    Google Scholar 

  82. Kitaigorodskii AI, Mirskaya KV, Tovbias AB (1968) Lattice energy of crystalline benzene in atom-atom approximation. Sov Phys Crystallogr USSR 13:176

    Google Scholar 

  83. Kitaigorodskii AI, Mirskaya KV (1969) Atom-atom potential method in physics of molecular crystal. Acta Cryst A 25:S91

    Google Scholar 

  84. Kitaigorodskii AI, Mirskaya KV (1965) Quadrupole interaction in a molecular crystal. Sov Phys Crystallogr 10:121

    Google Scholar 

  85. Hagler AT, Huler E, Lifson S (1974) Energy functions for peptides and proteins. I. Derivation of a consistent force field including the hydrogen bond from amide crystals. JAm Chem Soc 96:5319–5327

    Article  CAS  Google Scholar 

  86. Hagler AT, Lifson S (1974) Energy functions for peptides and proteins. II. The amide hydrogen bond and calculation of amide crystal properties. J Am Chem Soc 96:5327–5335

    Article  CAS  PubMed  Google Scholar 

  87. Hagler A, Lifson SA (1974) Procedure for obtaining energy parameters from crystal packing. Acta Cryst B30:1336–1341

    Article  Google Scholar 

  88. Hagler ATT, Dauber P, Lifson S (1979) Consistent force field studies of intermolecular forces in hydrogen-bonded crystals. 3. The C=O⋯H–O hydrogen bond and the analysis of the energetics and packing of carboxylic acids. J Am Chem Soc 101:5131–5141

    Article  CAS  Google Scholar 

  89. Murthy ASN, Rao CNR (1970) Recent theoretical treatments of the hydrogen bond. J Mol Struc 6:253–282

    Article  CAS  Google Scholar 

  90. Pearlman Da et al (1995) AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput Phys Commun 91:1–41

    Article  CAS  Google Scholar 

  91. Stockmayer WH (1941) Second virial coefficients of polar gases second virial coefficients of polar gases. J Chem Phys 9:398–402

    Article  CAS  Google Scholar 

  92. Liquori AM (1960) The stereochemical code and the logic of a protein molecule. Q Rev Biophys 2:65–92

    Article  Google Scholar 

  93. Berkovitch-yellin Z, Leiserowitz L (1980) The role of Coulomb forces in the crystal packing of amides. A study based on experimental electron densities. J Am Chem Soc 102:7677–7690

    Article  CAS  Google Scholar 

  94. Spackman MA (1987) A Simple quantitative model of hydrogen bonding. Application to more complex systems. J Phys Chem 91:3179–3186

    Article  CAS  Google Scholar 

  95. Spackman MA, Weber HP, Craven BM (1988) Energies of molecular interactions from Bragg diffraction data. J Am Chem Soc 110:775–782

    Article  CAS  Google Scholar 

  96. Dinur U, Hagler AT (1992) The role of nonbond and charge flux in hydrogen bond interactions. The effect on structural changes and spectral shifts in water dimer. J Chem Phys 97:9161–9172

    Article  CAS  Google Scholar 

  97. Shaik MS, Liem SY, Popelier PLA (2010) Properties of liquid water from a systematic refinement of a high-rank multipolar electrostatic potential. J Chem Phys 132:174504

    Article  CAS  PubMed  Google Scholar 

  98. Ren P, Wu C, Ponder JW (2011) Polarizable atomic multipole-based molecular mechanics for organic molecules. J Chem Theory Comput 7:3143–3161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bakó I et al (2010) Hydrogen bonded network properties in liquid formamide. J Chem Phys 132:14506

    Article  CAS  Google Scholar 

  100. Lifson S, Hagler AT, Dauber P (1979) Consistent force field studies of intermolecular forces in hydrogen-bonded crystals. 1. Carboxylic acids, amides, and the C=O⋯H-hydrogen bonds. J Am Chem Soc 101:5111

    Article  CAS  Google Scholar 

  101. Hagler AT, Lifson S, Dauber P (1979) Consistent force field studies of intermolecular forces in hydrogen-bonded crystals. 2. A benchmark for the objective comparison of alternative force fields. J Am Chem Soc 101:5122–5130

    Article  CAS  Google Scholar 

  102. Morozov AV, Kortemme T (2006) Potential functions for hydrogen bonds in protein structure prediction and design. Adv Protein Chem 72:1–38

    CAS  Google Scholar 

  103. McGuire RF, Momany FA, Scheraga HA (1972) Energy parameters in polypeptides. V. An empirical hydrogen bond potential function based on molecular orbital calculations. J Phys Chem 76:375–393

    Article  CAS  PubMed  Google Scholar 

  104. Sippl MJ, Ncmethy G, Scheraga HA (1984) Intermolecular potentials from crystal data. 6. Determination of empirical potentials for O–H⋯O=C hydrogen bonds from packing conflguratlons. J Phys Chem 7:6231–6233

    Article  Google Scholar 

  105. Arnautova YA, Jagielska A, Scheraga HA (2006) A new force field (ECEPP-05) for peptides, proteins, and organic molecules. J Phys Chem B 110:5025–5044

    Article  CAS  PubMed  Google Scholar 

  106. Weiner SJ et al (1984) A new force-field for molecular mechanical simulation of nucleic-acids and proteins. J Am Chem Soc 106:765–784

    Article  CAS  Google Scholar 

  107. Cornell WD, Kollman, PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  108. Mccammon JA, Wolynes PG, Karplus M (1979) Picosecond dynamics of tyrosine side chains in proteins. Biochemistry 18:927–942

    Article  CAS  PubMed  Google Scholar 

  109. Brooks BR et al (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  110. Neria E, Fischer S, Karplus M (1996) Simulation of activation free energies in molecular systems. J Chem Phys 105:1902–1921

    Article  CAS  Google Scholar 

  111. Allinger NL, Yuh YH, Jenn-Huei L (1989) Molecular mechanics. The MM3 force field for hydrocarbons. J Am Chem Soc 11:8551–8566

    Article  Google Scholar 

  112. Allinger NL, Chen K, Lii J (1996) An improved force field (MM4) for saturated hydrocarbons. J Comp Chem 17:642–668

    Article  CAS  Google Scholar 

  113. Hagler AT (2018) The second phase of FF research introduces a fork in the road: relaxation of physics-based criteria through the introduction of correction factors… or Inclusion of more rigorous physics into the representation of molecular energetics. J Comput Aided Mol Des. https://doi.org/10.1007/s10822-018-0134-x

    Article  PubMed  Google Scholar 

  114. Pullman B, Pullman A (1959) The electronic structure of the purine-pyrimidine pairs of DNA. Biochim Biophys Acta 36:343–350

    Article  CAS  PubMed  Google Scholar 

  115. Pullman B (1969) Opening remarks: quantum-mechanical calculations of biological structures and mechanisms. Ann N Y Acad Sci 158:1–19

    Article  CAS  PubMed  Google Scholar 

  116. Hückel VE (1931) Quantentheoretische beitrgge zum benzolproblem. I. Die elekfronenkonfigurafion des benzols und verwandfer verbindungen. Zeitsch Phys 70:204–286

    Article  Google Scholar 

  117. DelRe G, Pullman B, Yonezawa T (1963) Electronic structure of the alpha-amino acids of proteins. I. Charge distributions and proton chemical shifts. Biochim Biophys Acta 75:153–182

    Article  CAS  PubMed  Google Scholar 

  118. DelRe G (1958) Charge distributions in saturated organic molecules. A simple MO-LCAO method. J Chem Soc 4031–4040

  119. Hoffmann R (1963) An extended hückel theory. I. Hydrocarbons. J Chem Phys 39:1397

    Article  CAS  Google Scholar 

  120. Pople JA, Santry DP, Segal GA (1965) Approximate self-consistent molecular orbital theory. I. Invariant procedures. J Chem Phys 43:S129–S129

    Article  CAS  Google Scholar 

  121. Hoffmann R, Imamurs A (1969) Quantum mechanical approach to the conformational analysis of macromolecules in ground and excited states. Biopolymers 7:207–213

    Article  CAS  Google Scholar 

  122. Rossi A, David CW, Schor R (1969) Extended Hückel calculations on polypeptide chains. The alpha helix. Theor Chim Acta 14:429–431

    Article  CAS  Google Scholar 

  123. Kier LB, George JM (1969) Extended Hiickel MO calculations of the conformation of several amino acids. Theor Chim Acta 260:258–260

    Article  Google Scholar 

  124. Govil G (1970) Molecular orbital calculations on polypeptides and proteins. Part 1. Extended Huckel theory calculations on trans-dipeptides. J Chem Soc A 2464–2469

  125. Govil G (1971) Molecular orbital calculations on polypeptides and proteins. Part 2 stability and conformational structure of cis-dipeptides. J Chem Soc A 386–388

  126. Govil G (1971) Molecular orbital calculations on polypeptides and proteins. 3 conformation of side chains. J Indian Chem Soc 48:731

    CAS  Google Scholar 

  127. Govil G, Saran A (1971) Molecular orbital calculations on polypeptides and proteins. 4. Studies by EHT and CNDO on the influence of hydrogen bond and chain length on certain structures. J Chem Soc A 3624–3627

  128. Govil G, Saran A (1972) Molecular orbital calculations on polypeptides and proteins 5. Stable conformations of oxygen-containing peptides. J Chem Soc Faraday Trans 68:1176–1180

    Article  CAS  Google Scholar 

  129. Yan JF, Momany FA, Hoffmann R, Scheraga HA, McGuire RF (1970) Energy parameters in polypeptides 2. Semiempirical molecular orbital calculations for model peptides. J Phys Chem 74:420

    Article  CAS  Google Scholar 

  130. Yan JF, Momany FA, Scheraga HA (1970) Conformational analysis of macromolecules. VI. Helical structures of 0-, rn-, and p-chlorobenzyl esters of poly-l-aspartic acid. J Am Chem Soc 92:1109–1115

    Article  CAS  Google Scholar 

  131. Momany FA, McGuire RF, Yan JF, Scheraga H (1971) Energy parameters in polypeptides. IV. Semiempirical molecular orbital calculations of conformational dependence of energy and partial charge in di- and tripeptides. J Phys Chem 75:2286–2297

    Article  CAS  PubMed  Google Scholar 

  132. Diner S, Malrieu JP, Claverie P (1969) Localized bond orbitals and the correlation problem I. The perturbation calculation of the ground state energy. Theor Chim Acta 13:1–17

    Article  CAS  Google Scholar 

  133. Maigret B, Pullman B, Dreyfus M (1970) Molecular orbital calculations on the conformation of polypeptides and proteins. 1. Preliminary investigations and simple dipeptides. J Theor Biol 26:321–333

    Article  CAS  PubMed  Google Scholar 

  134. Maigret M, Pullman B, Caillet J (1970) The conformational energy of an alanyl residue preceding proline: a QM approach. Biochem Biophys Res Comm 40:808–813

    Article  CAS  PubMed  Google Scholar 

  135. Pullman B, Pullman A (1974) Molecular orbital calculations on the conformation of amino acid residues of proteins. Adv Prot Chem 28:347–526

    CAS  Google Scholar 

  136. Boyd DB (2013) Pioneers of quantum chemistry: ACS symposium series, vol. 1122. American Chemical Society, Washington, DC, pp 221–273

    Book  Google Scholar 

  137. Clementi E (1962) SCF-MO wave functions for the hydrogen fluoride molecule. J Chem Phys 36:33

    Article  CAS  Google Scholar 

  138. Veillard A, Clementi E (1967) Complete multi. configuration self-consistent field theory. Theor Chim Acta 7:133–143

    Article  CAS  Google Scholar 

  139. Clementi E (1972) Computation of large molecules with the Hartree–Fock model. Proc Natl Acad Sci USA 69:2942–2944

    Article  CAS  PubMed  Google Scholar 

  140. Clementi E, Davis DR (1967) Electronic structure of large molecular systems. J Comp Phys 2:223–244

    Google Scholar 

  141. Clementi E, Andre JM, Andre MC, Klint D, Hahn D (1969) Study of the electronic structure of molecules. X ground state for adenine, cytosine, guanine and thyamine. Acta Phys Acad Sci Hungaricae 27:439–521

    Google Scholar 

  142. Clementi E, Mehl J, von Niessen W (1971) Study of the electronic structure of molecules. XII. Hydrogen bridges in the guanine–cytosine pair and in the dimeric form of formic acid. J Chem Phys 54:508

    Article  CAS  Google Scholar 

  143. Popkie H, Kistenmacher H, Clementi E (1973) Study of the structure of molecular complexes. IV. The Hartree–Fock potential for the water dimer and its application to the liquid state. J Chem Phys 59:1325

    Article  CAS  Google Scholar 

  144. Kistenmacher H (1974) Study of the structure of molecular complexes. VI. Dimers and small clusters of water molecules in the Hartree–Fock approximation. J Chem Phys 61:546

    Article  CAS  Google Scholar 

  145. Matsuoka O, Clementi E, Yoshimine M (1976) CI study of the water dimer potential surface. J Chem Phys 64:1351

    Article  CAS  Google Scholar 

  146. Barker JA, Watts RO (1969) Structure of water: a Monte Carlo calculation. Chem Phys Lett 3:144–145

    Article  CAS  Google Scholar 

  147. Narten AH (1972) Liquid water: atom pair correlation functions from neutron and X-ray diffraction. J Chem Phys 56:5681

    Article  CAS  Google Scholar 

  148. Lie GC, Clementi E (1975) Study of the structure of molecular complexes. XII. Structure of liquid water obtained by Monte Carlo simulation with the Hartree–Fock potential corrected by inclusion of dispersion forces. J Chem Phys 62:2195

    Article  CAS  Google Scholar 

  149. Bartlett RJ, Shavitt I, Purvis GD (1979) The quartic force field of H2O determined by many-body methods that include quadruple excitation effects. J Chem Phys 71:281

    Article  CAS  Google Scholar 

  150. Lie GC, Clementi E (1986) Molecular-dynamics simulation of liquid water with an ab initio fiexible water-water interaction potential. Phys Rev A 33:2679–2693

    Article  CAS  Google Scholar 

  151. Corongiu G, Clementi E (1993) Molecular dynamics simulations with a flexible and polarizable potential: density of states for liquid water at different temperatures. J Chem Phys 98:4984–4990

    Article  CAS  Google Scholar 

  152. Corongiu G, Clementi E (1992) Liquid water with an ab initio potential: X-ray and neutron scattering from 238 to 368 K. J Chem Phys 97:2030

    Article  CAS  Google Scholar 

  153. Corongiu G, Clementi E (1993) Solvated water molecules and hydrogen-bridged networks in liquid water. J Chem Phys 98:2241–2249

    Article  CAS  Google Scholar 

  154. Sciortino F, Corongiu G (1993) Structure and dynamics in hexagonal ice: a molecular dynamics simulation with an ab initio polarizable and flexible potential. J Chem Phys 98:5694

    Article  CAS  Google Scholar 

  155. Clementi E, Cavallone F, Scordamaglia R (1977) Analytical potentials from ‘ab Initio’ computations for the Interaction between biomolecules. 1. Water with amino acids. J Am Chem Soc 99:5531–5545

    Article  CAS  PubMed  Google Scholar 

  156. Scordamaglia R, Cavallone F, Clementi E (1977) Analytical potentials from ‘ab initio’ computations for the interaction between biomolecules. 2. Water with the four bases of DNA. J Am Chem Soc 99:5545–5550

    Article  CAS  PubMed  Google Scholar 

  157. Clementi E, Corongiu G, Lelj F (1979) Analytical potentials from ab initio computations for the interaction between biomolecules. V. The phosphate group in nucleic acids. J Chem Phys 70:3726

    Article  CAS  Google Scholar 

  158. Clementi E, Corongiu G (1979) Interaction of water with DNA single and double helix in the B conformation. Int J Quantum 16:897–915

    Article  CAS  Google Scholar 

  159. Aida M, Corongiu G, Clementi E (1992) Ab initio force field for simulations of proteins and nucleic acids. Int J Quantum Chem 42:1353–1381

    Article  CAS  Google Scholar 

  160. Corongiu G (1992) Molecular dynamics simulation for liquid water using a polarizable and flexible potential. Int J Quantum Chem 42:1209–1235

    Article  CAS  Google Scholar 

  161. Clementi E, Corongiu G (1985) Computer simulations of complex chemical systems. Adv Biophys 20:75–107

    Article  CAS  PubMed  Google Scholar 

  162. Clementi E et al (1991) Selected topics in ab initio computational chemistry in both very small and very large chemical systems. Chem Rev 91:699–879

    Article  Google Scholar 

  163. Pople JA (1970) Molecular orbital methods in organic chemistry. Acct Chem Res 3:217–223

    Article  CAS  Google Scholar 

  164. Hehre WJ, Radom L, Schleyer PVR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, Hoboken

    Google Scholar 

  165. Pople J (1999) Nobel lecture: quantum chemical models. Rev Mod Phys 71:1267–1274

    Article  CAS  Google Scholar 

  166. Hehre WJ, Stewart RF, Pople JA (1969) Self-consistent molecular-orbital methods. I. Use of Gaussian expansions of slater-type atomic orbitals. J Chem Phys 51:2657

    Article  CAS  Google Scholar 

  167. Hehre WJ, Lathan WA, Ditchfield R, Newton MD, Pople JA (1970) Gaussian 70. Quantum Chem Exch Progr 237

  168. Del Bene J, Pople JA (1969) Intermolecular energies of small water polymers. Chem Phys Lett 4:426–428

    Article  Google Scholar 

  169. Del Bene J, Pople JA (1970) Theory of molecular interactions. I. Molecular orbital studies of water polymers using a minimal slater-type basis. J Chem Phys 52:4858

    Article  Google Scholar 

  170. Del Bene JE (1973) Theory of molecular interactions. III. A comparison of studies of H2O polymers using different molecular-orbital basis sets. J Chem Phys 58:3605

    Article  Google Scholar 

  171. Hagler AT, Leiserowitz L, Tuval M (1976) Experimental and theoretical studies of barrier to rotation about N–C-alpha and C-alpha-C′ bonds (phi and psi) in amides and peptides. J Am Chem Soc 98:4600–4612

    Article  CAS  PubMed  Google Scholar 

  172. Bernstein J, Hagler AT (1978) Conformational polymorphism the influence of crystal structure on molecular conformation. J Am Chem Soc 100:673–681

    Article  CAS  Google Scholar 

  173. Hagler AT, Bernstein J (1978) Conformational polymorphism 2. Crystal energetics by computational substitution—further evidence for sensitivity of method. J Am Chem Soc 100:673–681

    Article  Google Scholar 

  174. Bernstein J, Hagler AT (1979) Polymorphism and isomorphism as tools to study the relationship between crystal forces and molecular-conformation. Mol Cryst Liq Cryst 50:223–233

    Article  CAS  Google Scholar 

  175. Lommerse JPM et al (2000) A test of crystal structure prediction of small organic molecules research papers. Acta Cryst B 56:697–714

    Article  CAS  Google Scholar 

  176. Van Eijck BP (2002) Crystal structure predictions using five space groups with two independent molecules. The case of small organic acids. J Comput Chem 23:456–462

    Article  CAS  PubMed  Google Scholar 

  177. Dunitz JD, Gavezzotti A (2009) How molecules stick together in organic crystals: weak intermolecular interactions. Chem Soc Rev 38:2622–2633

    Article  CAS  PubMed  Google Scholar 

  178. Bardwell D et al (2011) Towards crystal structure prediction of complex organic compounds—a report on the fifth blind test. Acta Crystallogr B 67:535–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Hornak V et al (2006) Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins-Struct Funct Bioinforms 65:712–725

    Article  CAS  Google Scholar 

  180. Feig M, MacKerell AD, Brooks CL (2003) Force field influence on the observation of π-helical protein structures in molecular dynamics simulations. J Phys Chem B 107:2831–2836

    Article  CAS  Google Scholar 

  181. Bochevarov AD et al (2013) Jaguar: a high-performance quantum chemistry software program with strengths in life and materials sciences. Int J Quantum Chem 113:2110–2142

    Article  CAS  Google Scholar 

  182. Kitano M, Fukuyama T, Kuchitsu K (1973) Molecular structure of N-methylacetamide as studied by gas electron diffraction. Bull Chem Soc Jpn 46:384–387

    Article  CAS  Google Scholar 

  183. Kitano M, Kuchitsu K (1974) Molecular structure of N-methylformamide as studied by gas electron diffraction. J Bull Chem Soc Jpn 47:631–634

    Article  CAS  Google Scholar 

  184. Kitano M, Kuchitsu K (1973) Molecular structure of acetamide as studied by gas electron diffraction. J Bull Chem Soc Jpn 46:3048–3051

    Article  CAS  Google Scholar 

  185. Brock CP, Ibers JA (1975) The role of crystal packing forces in the structure of pentaphenylantimony coordinate molecules. In such molecules the trigonal. Acta Cryst A 31:38–42

    Article  Google Scholar 

  186. Hagler AT, Leiserowitz L (1978) Amide hydrogen-bond and anomalous packing of adipamide. J Am Chem Soc 100:5879–5887

    Article  CAS  Google Scholar 

  187. Guo H, Karplus M (1992) Ab initio studies of hydrogen bonding of N-methyiacetamide: structure, cooperativlty, and internal rotational barriers. J Phys Chem 96:7273–7287

    Article  CAS  Google Scholar 

  188. Mennucci B, Martínez JM (2005) How to model solvation of peptides? Insights from a quantum-mechanical and molecular dynamics study of N-methylacetamide. 1. Geometries, infrared, and ultraviolet spectra in water. J Phys Chem B 109:9818–9829

    Article  CAS  PubMed  Google Scholar 

  189. Villani V, Alagona G, Ghio C (1999) Ab initio studies on N-methylacetamide. Molec Eng B 8:135–153

    Article  Google Scholar 

  190. Katz L, Post B (1960) The crystal structure and polymorphism of N-methylacetamide. Acta Crystallogr 13:624–628

    Article  CAS  Google Scholar 

  191. Rauscher S et al (2015) Structural ensembles of intrinsically disordered proteins depend strongly on force field: a comparison to experiment. J Chem Theory Comput 11:5513–5524

    Article  CAS  PubMed  Google Scholar 

  192. Hagler AT (1977) Relation between spatial electron-density and conformational properties of molecular systems. Isr J Chem 16:202–212

    Article  CAS  Google Scholar 

  193. Hagler AT, Lapiccirella A (1976) Spatial electron distribution and population analysis of amides, carboxylic acid, and peptides and their relation to empirical poteintial functions. Biopolymers 15:1167–1200

    Article  CAS  PubMed  Google Scholar 

  194. Hagler AT, Lapiccirella A (1978) Basis set dependence of spatial electron-distribution—implications for calculated conformational equilibria. J Am Chem Soc 100:4026–4029

    Article  CAS  Google Scholar 

  195. Nyburg SC, Faerman CH (1985) A revision of van der Waals atomic radii for molecular crystals: N, O, F, S, CI, Se, Br and I bonded to carbon. Acta Cryst B 41:274–279

    Article  Google Scholar 

  196. Stone AJ, Price SL (1988) Some new ideas in the theory of intermolecular forces: anisotropic atom-atom. J Phys Chem 92:3325–3335

    Article  CAS  Google Scholar 

  197. Price SL, Leslie M, Welch GWA, Habgood M, Price LS, Karamertzanis PG, Day GM (2010) Modelling organic crystal structures using distributed multipole and polarizability-based model intermolecular potentials. Phys Chem Chem Phys 12:8478–8490

    Article  CAS  PubMed  Google Scholar 

  198. Eramian H, Tian Y-H, Fox Z, Beneberu HZ, Kertesz M, Se S (2013) On the anisotropy of van der Waals atomic radii of O. F, Cl, Br, and I. J Phys Chem A 117:14184–14190

    Article  CAS  PubMed  Google Scholar 

  199. Hagler AT (2015) Quantum derivative fitting and biomolecular force fields—functional form, coupling terms, charge flux, nonbond anharmonicity and individual dihedral potentials. J Chem Theory Comput 11:5555–5572

    Article  CAS  PubMed  Google Scholar 

  200. Hagler AT (1977) On the relation between the spatial electron density and the conformational properties of molecular systems. Isr J Chem 16:202–212

    Article  CAS  Google Scholar 

  201. Rowlinson JS (1951) The lattice energy of ice and the second virial coefficient of water vapour. Trans Faraday Soc 47:120–129

    Article  CAS  Google Scholar 

  202. Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) In: Pullman B (ed) Intermolecular forces. Reidel Publishing Company, Dordrecht, pp 331–342

    Chapter  Google Scholar 

  203. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  204. Berkovitch-Yellin Z, Leiserowitz L (1982) Atom–atom potential analysis of the packing characteristics of carboxylic acids. A study based on experimental electron density distributions. J Am Chem Soc 104:4052–4064

    Article  CAS  Google Scholar 

  205. Spackman MA (2012) Charge densities and crystal engineering in modern charge-density analysis. Springer, Dordrecht

    Google Scholar 

  206. Mannfors B, Palmo K, Krimm S (2000) A new electrostatic model for molecular mechanics force fields. J Mol Struct 556:1–21

    Article  CAS  Google Scholar 

  207. Palmo K, Mannfors B, Mirkin NG, Krimm S (2003) Potential energy functions: from consistent force fields to spectroscopically determined polarizable force fields. Biopolymers 68:383–394

    Article  CAS  PubMed  Google Scholar 

  208. Qian W, Krimm S (2005) Limitations of the molecular multipole expansion treatment of electrostatic interactions for C–H⋯O and O–H⋯O hydrogen bonds and application of a general charge density approach. J Phys Chem A 109:5608–5618

    Article  CAS  PubMed  Google Scholar 

  209. Shi Y et al (2013) Polarizable atomic multipole-based AMOEBA force field for proteins. J Chem Theory Comput 9:4046–4063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Weiner PK, Kollman PA, AMBER (1981) Assisted model building with energy refinement. A general program for modeling molecules and their interactions. J Comput Chem 2:287–303

    Article  CAS  Google Scholar 

  211. McCammon JA, Gelin BR, Karplus M (1977) Dynamics of folded proteins. Nature 267:585–590

    Article  CAS  PubMed  Google Scholar 

  212. Engler EM, Andose JD, Schleyer PVR (1973) Critical evaluation of molecular mechanics. J Am Chem Soc 95:8005

    Article  CAS  Google Scholar 

  213. Weiner SJ, Kollman PA, Nguyen DT, Case DA (1986) An all atom force field for simulations of proteins and nucleic acids. J Comput Chem 7:230–252

    Article  CAS  PubMed  Google Scholar 

  214. van Gunsteren WF, Berendsen HJC (1987) GROningen MOlecular Simulation (GROMOS) Library Manual. Biomos, Groningen

    Google Scholar 

  215. Hermans J, Berendsen HJC, van Gunsteren WF, Postma JPM (1984) A consistent empirical potential for water–protein interactions. Biopolymers 23:1513–1518

    Article  CAS  Google Scholar 

  216. Jorgensen WL (1981) Transferable intermolecular potential functions for water, alcohols, and ethers. Application to liquid water. J Am Chem Soc 103:335–340

    Article  CAS  Google Scholar 

  217. Jorgensen WL (1982) Revised TIPS for simulations of liquid water and aqueous solutions. J Chem Phys 77:4156

    Article  CAS  Google Scholar 

  218. Jorgensen WL, Swenson CJ (1985) Optimized intermolecular potential functions for amides and peptides. Structure and properties of liquid amides. J Am Chem Soc 107:569–578

    Article  CAS  Google Scholar 

  219. Jorgensen WL, Tirado-Rives J (1988) The OPLS potential functions for proteins. Energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc 110:1657–1666

    Article  CAS  PubMed  Google Scholar 

  220. Dauber P, Osguthorpe DJ, Hagler AT, Structure (1982) Energetics and dynamics of ligand binding to dihydrofolate-reductase. Biochem 10:312–318

    CAS  Google Scholar 

  221. Dauber-Osguthorpe P et al (1988) Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system. Proteins Struct Funct Bioinform 4:31–47

    Article  CAS  Google Scholar 

  222. Hagler AT, Osguthorpe DJ, Dauber-Osguthorpe P, Hempel JC (1985) Dynamics and conformational energetics of a peptide hormone: vasopressin. Science 227:1309–1315

    Article  CAS  PubMed  Google Scholar 

  223. Struthers RS, Rivier J, Hagler AT (1985) Molecular dynamics and minimum energy conformations of GnRH and analogs. Ann N Y Acad Sci 439:81–96

    Article  CAS  PubMed  Google Scholar 

  224. Struthers RS et al (1990) Design of biologically-active, conformationally constrained Gnrh antagonists. Proteins-Struct Funct Genet 8:295–304

    Article  CAS  PubMed  Google Scholar 

  225. Dauber-Osguthorpe P et al (1988) Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system. Proteins-Struct Funct Genet 4:31–47

    Article  CAS  PubMed  Google Scholar 

  226. Rick SW, Stuart SJ (2002) Potentials and algorithms for incorporating polarizability in computer simulations. Rev Comput Chem 18:89–146

    CAS  Google Scholar 

  227. Vega C, Abascal JLF (2011) Simulating water with rigid non-polarizable models: a general perspective. Phys Chem Chem Phys 13:19663–19688

    Article  CAS  PubMed  Google Scholar 

  228. Wang L-P et al (2013) Systematic improvement of a classical molecular model of water. J Phys Chem B 117:9956–9972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Cardamone S, Hughes TJ, Popelier PLA (2014) Multipolar electrostatics. PhysChemChemPhys 16:10367–10387

    CAS  Google Scholar 

  230. Clark GNI, Cappa CD, Smith JD, Saykally RJ, Head-Gordon T (2010) The structure of ambient water. Mol Phys 108:1415–1433

    Article  CAS  Google Scholar 

  231. Demerdash O, Yap E-H, Head-Gordon T (2014) Advanced potential energy surfaces for condensed phase simulation. Annu Rev Phys Chem 65:149–174

    Article  CAS  PubMed  Google Scholar 

  232. Ben-Naim A, Stillinger FH (1972) Aspects of the statistical-mechanical theory of water. Wiley, Hoboken

    Google Scholar 

  233. Rahman A, Stillinger FH (1971) Molecular dynamics study of liquid water. J Chem Phys 55:3336–3359

    Article  CAS  Google Scholar 

  234. Alder BJ, Wainwright TE (1959) Studies in molecular dynamics. I. General method. J Chem Phys 31:459

    Article  CAS  Google Scholar 

  235. Alder BJ, Wainwright TE (1960) Studies in molecular dynamics. II. Behavior of a small number of elastic spheres. J Chem Phys 33:1439

    Article  CAS  Google Scholar 

  236. Stillinger FH, Rahman A (1974) Improved simulation of liquid water by molecular dynamics. J Chem Phys 60:1545–1557

    Article  CAS  Google Scholar 

  237. Mahoney MW, Jorgensen WL (2000) A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. J Chem Phys 112:8910

    Article  CAS  Google Scholar 

  238. Rick SW, Stuart SJ, Berne BJ (1994) Dynamical fluctuating charge force fields: application to liquid water. J Chem Phys 101:6141–6156

    Article  CAS  Google Scholar 

  239. Chen B, Xing J, Siepmann JI (2000) Development of polarizable water force fields for phase equilibrium calculations. J Phys Chem B 104:2391–2401

    Article  CAS  Google Scholar 

  240. Horn HW et al (2004) Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J Chem Phys 120:9665–9678

    Article  CAS  PubMed  Google Scholar 

  241. Abascal JLF, Vega C (2005) A general purpose model for the condensed phases of water: TIP4P/2005. J Chem Phys 123:234505

    Article  CAS  PubMed  Google Scholar 

  242. Bauer BA, Warren GL, Patel S (2009) Incorporating phase-dependent polarizability in nonadditive electrostatic models for molecular dynamics simulations of the aqueous liquid—vapor interface. J Chem Theory Comput 359–373

  243. Bauer BA, Patel S (2009) Properties of water along the liquid-vapor coexistence curve via molecular dynamics simulations using the polarizable TIP4P-QDP-LJ water model. J Chem Phys 131:84709

    Article  CAS  Google Scholar 

  244. Cisneros GA et al (2016) Modeling molecular interactions in water: from pairwise to many-body potential energy functions. Chem Rev 116:7501 – 7528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Lipkowitz KB, Allinger NL, Lipkowitz KB, Allinger NL (1987) QCPE Bull 7

  246. Allinger NL, Lii J-H (1987) Benzene, aromatic rings, van der Waals molecules, and crystals of aromatic molecules in molecular mechanics (MM3). J Comput Chem 8:1146–1153

    Article  CAS  Google Scholar 

  247. Lii JH, Allinger NL (1989) Molecular mechanics. The MM3 force field for hydrocarbons. 2. Vibrational frequencies and thermodynamics. J Am Chem Soc 111:8566–8575

    Article  CAS  Google Scholar 

  248. Lii JH, Allinger NL (1989) Molecular mechanics. The MM3 force field for hydrocarbons. 3. The van der Waals’ potentials and crystal data for aliphatic and aromatic hydrocarbons. J Am Chem Soc 111:8576–8582

    Article  CAS  Google Scholar 

  249. Ermer O (1976) Calculation of molecular properties using force fields. Applications in organic chemistry. Bond Forces Struct Bond 27:161–211

    Article  CAS  Google Scholar 

  250. Lifson S, Stern PS (1982) Born–Oppenheimer energy surfaces of similar molecules: interrelations between bond lengths, bond angles, and frequencies of normal vibrations in alkanes. J Chem Phys 77:4542

    Article  CAS  Google Scholar 

  251. Allinger NL, Rahman M, Lii JA (1990) Molecular mechanics force field (MM3) for alcohols and ethers. J Am Chem Soc 112:8293–8307

    Article  CAS  Google Scholar 

  252. Schmitz LR, Allinger NL (1990) Molecular mechanics calculations (MM3) on aliphatic amines. J Am Chem Soc 112:8307–8315

    Article  CAS  Google Scholar 

  253. Allinger NL, Quinn M, Rahman M, Chen K (1991) Molecular mechanics (MM3) calculations on sulfides. J Phys Org Chem 4:647–658

    Article  CAS  Google Scholar 

  254. Chen K, Allinger NL (1991) Molecular mechanics (MM3) calculations on disulfides. J Phys Org Chem 4:659–666

    Article  CAS  Google Scholar 

  255. Allinger NL, Zhu ZQS, Chen K (1992) Molecular mechanics (MM3) studies of carboxylic acids and esters. J Am Chem Soc 114:6120–6133

    Article  CAS  Google Scholar 

  256. Tai JC, Yang L, Allinger NL (1993) Molecular mechanics (MM3). Calculations on nitrogen-containing aromatic heterocycles. J Am Chem Soc 115:11906–11917

    Article  CAS  Google Scholar 

  257. Lii J, Allinger NL (1991) The MM3 force field for amides, polypeptides and proteins. J Comput Chem 12:186–199

    Article  CAS  Google Scholar 

  258. Lii J, Allinger NL (1994) Directional hydrogen bonding in the MM3 force field. I. J Phys Org Chem 7:591–609

    Article  CAS  Google Scholar 

  259. Dauber P, Hagler AT (1980) Crystal packing hydrogen bonding, and the effect of crystal forces on molecular conformation. Acct Chem Res 13:105–112

    Article  CAS  Google Scholar 

  260. Nevins N, Lii JH, Allinger NL (1996) Molecular mechanics (MM4) calculations on conjugated hydrocarbons. J Comput Chem 17:695–729

    CAS  Google Scholar 

  261. Nevins N, Allinger NL (1996) Molecular mechanics (MM4) vibrational frequency calculations for alkenes and conjugated hydrocarbons. J Comput Chem 17:730–746

    Article  CAS  Google Scholar 

  262. Langley CH, Allinger NL (2002) Molecular mechanics (MM4) calculations on amides. J Phys Chem A 106:5638–5652

    Article  CAS  Google Scholar 

  263. Chen K, Lii J, Fan Y, Allinger NL (2007) Molecular mechanics (MM4) study of amines. J Comput Chem 28:2391–2412

    Article  CAS  PubMed  Google Scholar 

  264. Allinger NL, Chen K, Lii J, Durkin KA (2003) Alcohols, ethers, carbohydrates, and related compounds. I. The MM4 force field for simple compounds. J Comput Chem 24:1447–1472

    Article  CAS  PubMed  Google Scholar 

  265. Nevins N, Chen K, Allinger NL (1996) Molecular mechanics (MM4) calculations on alkenes. J Comput Chem 17:669–694

    CAS  Google Scholar 

  266. Langley CH, Allinger NL (2003) Molecular mechanics (MM4) and ab initio study of amide-amide and amide-water dimers. J Chem Phys A 107:5208–5216

    Article  CAS  Google Scholar 

  267. Cornell WD et al (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  268. Wang J, Cieplak P, Kollman PA (2000) How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J Comput Chem 21:1049–1074

    Article  CAS  Google Scholar 

  269. Brüesch P (1966) X-ray and infrared studies of bicyclo(2.2.2) octane, triethylenediamine and quinuclidine—II. Normal co-ordinate calculations of bicyclo(2.2.2.)octane, triethylenediamine and quinuclidine. Spectrochim Acta 22:867–875

    Article  Google Scholar 

  270. Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97:10269–10280

    Article  CAS  Google Scholar 

  271. MacKerell AD et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  PubMed  Google Scholar 

  272. Gelin BR, Karplus M (1975) Sidechain torsional potentials and motion of amino acids in proteins: bovine pancreatic trypsin inhibitor. Proc Natl Acad Sci USA 72:2002–2006

    Article  CAS  PubMed  Google Scholar 

  273. Maple JR, Hwang MJ, Stockfisch TP, Hagler AT (1994) Derivation of class II force fields.3. Characterization of a quantum force field for alkanes. Isr J Chem 34:195–231

    Article  CAS  Google Scholar 

  274. Debiec KT et al (2016) Further along the road less traveled: AMBER ff15ipq, an original protein force field built on a self-consistent physical model. J Chem Theory Comput 12:3926 – 3947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Huang J et al (2017) Charmm36M: an improved force field for folded and intrinsically disordered proteins. Nat Methods 14:71–73

    Article  CAS  PubMed  Google Scholar 

  276. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  277. Kaminski GA, Friesner RA, Tirado-rives J, Jorgensen WL (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105:6474–6487

    Article  CAS  Google Scholar 

  278. Beachy MD, Chasman D, Murphy RB, Halgren TA, Friesner RA (1997) Accurate ab initio quantum chemical determination of the relative energetics of peptide conformations and assessment of empirical force fields. J Am Chem Soc 119:5908–5920

    Article  CAS  Google Scholar 

  279. Daura X, Mark AE, van Gunsteren WF (1998) Parametrization of aliphatic CH United Atoms of GROMOS96 force field. J Comp Chem 19:535–547

    Article  CAS  Google Scholar 

  280. Schuler LD, Daura X, van Gunsteren WF (2001) An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J Comp Chem 22:1205–1218

    Article  CAS  Google Scholar 

  281. Halgren TA (1996) Merck molecular force field.I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem 17:490–519

    Article  CAS  Google Scholar 

  282. Schuler LD, van Gunsteren WF (2000) On the choice of dihedral angle potential energy functions for n-alkanes. Mol Simul 25:301–319

    Article  CAS  Google Scholar 

  283. Oostenbrink C, Villa A, Mark AE, van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25:1656–1676

    Article  CAS  PubMed  Google Scholar 

  284. Schmid N et al (2011) Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur Biophys J 40:843–856

    Article  CAS  PubMed  Google Scholar 

  285. Horta BAC, Fuchs PFJ, van Gunsteren WF, Hunenberger Philippe H (2011) New interaction parameters for oxygen compounds in the GROMOS force field: improved pure-liquid and solvation properties for alcohols, ethers, aldehydes, ketones, carboxylic acids and esters. J Chem Theory Comput 7:1016–1031

    Article  CAS  PubMed  Google Scholar 

  286. Horta BAC et al (2012) Reoptimized interaction parameters for the peptide-backbone model compound N-methylacetamide in the GROMOS force field: influence on the folding properties of two beta-peptides in methanol. J Comput Chem 33:1907–1917

    Article  CAS  PubMed  Google Scholar 

  287. Arnautova Ya, Jagielska A, Pillardy J, Scheraga H (2003) Derivation of a new force field for crystal-structure prediction using global optimization: nonbonded potential parameters for hydrocarbons and alcohols. J Phys Chem B 107:7143–7154

    Article  CAS  Google Scholar 

  288. Jagielska A, Arnautova YA, Scheraga HA (2004) Derivation of a new force field for crystal-structure prediction using global optimization: nonbonded potential parameters for amines, imidazoles, amides, and carboxylic acids. J Phys Chem B 108:12181–12196

    Article  CAS  Google Scholar 

  289. Pillardy J, Arnautova Y, Czaplewski C, Gibson KD, Scheraga HA (2001) Conformation-family Monte Carlo: a new method for crystal structure prediction. Proc Natl Acad Sci USA 98:12351–12356

    Article  CAS  PubMed  Google Scholar 

  290. Williams DE, Cox SR (1984) Nonbonded potentials for azahydrocarbons: the importance of the coulombic interaction. Acta Cryst B40:404–417

    Article  CAS  Google Scholar 

  291. Berkovitch-Yellin Z (1985) Toward an ab initio derivation of crystal morphology. J Am Chem Soc 107:8239–8253

    Article  CAS  Google Scholar 

  292. Mooij WTM, van Eijck BP, Price SL, Verwer P, Kroon J (1998) Crystal structure predictions for acetic acid. J Comput Chem 19:459–474

    Article  CAS  Google Scholar 

  293. Hehre WJ, Pople JA (1968) Atomic electron populations for some simple molecules. Chem Phys Lett 2:379–380

    Article  CAS  Google Scholar 

  294. Cox SR, Williams DE (1981) Representation of the molecular electrostatic potential by a net atomic charge model. J Comput Chem 2:304–323

    Article  CAS  Google Scholar 

  295. Scrocco E, Tomasi T (1978) Electronic molecular structure, reactivity and intermolecular forces: an euristic interpretation by means of electrostatic molecular potentials. Adv Quant Chem I1:116–193

    Google Scholar 

  296. Besler BH, Merz KM, Kollman PA (1990) Atomic charges derived from semiempirical methods. J Comput Chem 11:431–439

    Article  CAS  Google Scholar 

  297. Clementi E (1985) Ab initio computational chemistry. J Phys Chem 89:4426–4436

    Article  CAS  Google Scholar 

  298. Zhou T, Huang D, Caflisch A (2010) Quantum mechanical methods for drug design. Curr Top Med Chem 10:33–45

    Article  CAS  PubMed  Google Scholar 

  299. Lopes PEM, Guvench O, MacKerell AD (2015) Molecular modeling of proteins. In: Kukol A (ed) Methods in molecular biology, vol. 1215. Springer, New York, pp 47–71

    Google Scholar 

  300. Moore GE, Fellow L (1965) Cramming more components onto integrated circuits. Electronics 114–117

  301. Becke AD, Perspective (2014) Fifty years of density-functional theory in chemical physics. J Chem Phys 140:18A301

    Article  CAS  PubMed  Google Scholar 

  302. St-Amant A, Salahub DR (1990) New algorithm for the optimization of geometries in local density functional theory. Chem Phys Lett 169:387–392

    Article  CAS  Google Scholar 

  303. Bajorath J, Kraut J, Li ZQ, Kitson DH, Hagler AT (1991) Theoretical-studies on the dihydrofolate-reductase mechanism—electronic polarization of bound substrates. Proc Natl Acad Sci USA 88:6423–6426

    Article  CAS  PubMed  Google Scholar 

  304. Andzelm JW, Nguyen DT, Eggenberger R, Salahub DR, Hagler AT (1995) Applications of the adiabatic connection method to conformational equilibria and reactions involving formic-acid. Comput Chem 19:145–154

    Article  CAS  Google Scholar 

  305. Halgren TA (1996) Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions. J Comput Chem 17:520–552

    Article  CAS  Google Scholar 

  306. Halgren TA (1996) Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94. J Comput Chem 17:553–586

    Article  CAS  Google Scholar 

  307. Halgren TA, Nachbar RB (1996) Merck molecular force field. IV.Conformational energies and geometries for MMFF94. J Comput Chem 17:587–615

    CAS  Google Scholar 

  308. Halgren TA (1996) Merck molecular force field. V. Extension of MMFF94 using experimental data, additional computational data, and empirical rules. J Comput Chem 17:616–641

    Article  CAS  Google Scholar 

  309. Maple JR, Dinur U, Hagler AT (1988) Derivation of force fields for molecular mechanics and dynamics from ab initio energy surfaces. Proc Natl Acad Sci USA 85:5350–5354

    Article  CAS  PubMed  Google Scholar 

  310. Maple JR et al (1994) Derivation of class-Ii force-fields.1. Methodology and quantum force-field for the alkyl functional-group and alkane molecules. J Comput Chem 15:162–182

    Article  CAS  Google Scholar 

  311. Hagler AT, Ewig CS (1994) On the use of quantum energy surfaces in the derivation of molecular-force fields. Comput Phys Commun 84:131–155

    Article  CAS  Google Scholar 

  312. Dinur U, Hagler AT (1991) Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol. 15. VCH, New York, pp 99–164

    Google Scholar 

  313. Probe Manual (1989) Biosym Technologies, Inc

  314. Ewig CS et al (2001) Derivation of class II force fields. VIII. Derivation of a general quantum mechanical force field for organic compounds. J Comput Chem 22:1782–1800

    Article  CAS  PubMed  Google Scholar 

  315. Palca J (1986) Computer models: cooperation on new molecules. Nature 322:586

    Article  Google Scholar 

  316. Halgren TA (1992) The representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters. J Am Chem Soc 114:7827–7843

    Article  CAS  Google Scholar 

  317. Ewig CS, Thacher TS, Hagler AT (1999) Derivation of class II force fields. 7. Nonbonded force field parameters for organic compounds. J Phys Chem B 103:6998–7014

    Article  CAS  Google Scholar 

  318. Halgren TA, MMFF VII (1999) Characterization of MMFF94, MMFF94s, and other widely available force fields for conformational energies and for intermolecular interaction energies and geometries. J Comput Chem 20:730–748

    Article  CAS  Google Scholar 

  319. Bordner AJ, Cavasotto CN, Abagyan RA (2003) Direct derivation of van der Waals force field parameters from quantum mechanical interaction energies. J Phys Chem B 107:9601–9609

    Article  CAS  Google Scholar 

  320. Hagler AT, Maple JR, Thacher TS, Fitzgerald GB, Dinur U Weiner PK (1989) Potential energy functions for organic and biomolecular systems. Comput Simul Biomol Syst ESCOM Leiden 1:149–167

    Google Scholar 

  321. Hwang MJ, Stockfisch TP, Hagler AT (1994) Derivation of class II force fields. 2. Derivation and characterization of a class-II force field, CFF93, for the alkyl functional group and alkane molecules. J Am Chem Soc 116:2515–2525

    Article  CAS  Google Scholar 

  322. Ercolessi F, Adams JB (1994) Interatomic potentials from first-principles calculations: the force-matching method. Eur Lett 26:583–588

    Article  CAS  Google Scholar 

  323. Dasgupta S, Goddard WA (1989) Hessian-biased force fields from combining theory and experiment. J Chem Phys 90:7207–7215

    Article  CAS  Google Scholar 

  324. Maple JR, Hwang MJ, Jalkanen KJ, Stockfisch TP, Hagler AT (1998) Derivation of class II force fields: V. Quantum force field for amides, peptides, and related compounds. J Comput Chem 19:430–458

    Article  CAS  Google Scholar 

  325. Palmo K, Mirkin NG, Pietila: L, Krimm S (1993) Spectroscopically determined force fields for macromolecules. 1 n-alkane chains. Macromolecules 26:6831–6840

    Article  CAS  Google Scholar 

  326. Stouch TR (2012) The errors of our ways: taking account of error in computer-aided drug design to build confidence intervals for our next 25 years. J Comput Aided Mol Des 26:125–134

    Article  CAS  PubMed  Google Scholar 

  327. Ermer O, Lex J (1987) Shortened C–C, bondsand antiplanar O=C–0–H torsion angles in 1,4-cubanedicarboxyiic acid. Anyen Chem Int Ed Engl 41:447–449

    Article  Google Scholar 

  328. Wilson E, Decius J, Cross PC (1980) Molecular vibrations. Dover, New York

    Google Scholar 

  329. Hwang MJ, Ni X, Waldman M, Ewig CS, Hagler AT (1998) Derivation of class II force fields. VI. Carbohydrate compounds and anomeric effects. Biopolymers 45:435–468

    Article  CAS  PubMed  Google Scholar 

  330. Chen K-H, Allinger NL (2002) Molecular mechanics (MM4) study of saturated four-membered ring hydrocarbons. J Mol Struct Theochem 581:215–237

    Article  CAS  Google Scholar 

  331. Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52:1757–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. MDDR Accelrys. http://accelrys.com/products/collaborative-science/databases/bioactivity-databases/mddr.html

  333. Sun H, Mumby SJ, Maple JR, Hagler AT (1994) An ab initio Cff93 all-atom force field for polycarbonates. J Am Chem Soc 116:2978–2987

    Article  CAS  Google Scholar 

  334. Sun H, Rigby D (1997) Polysiloxanes: ab initio force field and structural, conformational and thermophysical properties title. Spectrochim Acta A 53:1301–1323

    Article  Google Scholar 

  335. Hill JR, Sauer J (1994) Molecular mechanics potential for silica and zeolite catalysts based on ab initio calculations. 1. Dense and microporous silica. J Phys Chem 98:1238–1244

    Article  CAS  Google Scholar 

  336. Zhu W et al (2009) Molecular dynamics simulations of AP/HMX composite with a modified force field. J Hazard Mater 167:810–816

    Article  CAS  PubMed  Google Scholar 

  337. McQuaid MJ, Sun H, Rigby D (2004) Development and validation of COMPASS force field parameters for molecules with aliphatic azide chains. J Comput Chem 25:61–71

    Article  CAS  PubMed  Google Scholar 

  338. Sun HCOMPASS (1998) An ab initio force-field optimized for condensed-phase applications—overview with details on alkane and benzene compounds. J Phys Chem B 102:7338–7364

    Article  CAS  Google Scholar 

  339. Dinur U, Hagler AT (1989) Direct evaluation of nonbonding interactions from ab initio calculations. J Am Chem Soc 111:5149–5151

    Article  CAS  Google Scholar 

  340. Dinur U, Hagler AT (1989) Determination of atomic point charges and point dipoles from the Cartesian derivatives of the molecular dipole moment and second moments, and from energy second derivatives of planar dimers II. Applications to model systems. J Chem Phys 91:2959–2970

    Article  CAS  Google Scholar 

  341. Dinur U, Hagler AT (1995) Geometry-dependent atomic charges—methodology and application to alkanes, aldehydes, ketones, and amides. J Comput Chem 16:154–170

    Article  CAS  Google Scholar 

  342. Galimberti D, Milani A, Castiglioni C (2013) Charge mobility in molecules: charge fluxes from second derivatives of the molecular dipole. J Chem Phys 138:164115

    Article  CAS  PubMed  Google Scholar 

  343. Cruz-Cabeza AJ, Bernstein J (2014) Conformational polymorphism. Chem Rev 114:2170–2191

    Article  CAS  PubMed  Google Scholar 

  344. Dauber P, Hagler AT, Crystal, Packing (1980) Hydrogen-bonding, and the effect of crystal forces on molecular-conformation. Acc Chem Res 13:105–112

    Article  CAS  Google Scholar 

  345. Liang CX, Ewig CS, Stouch TR, Hagler AT (1993) Abinitio studies of lipid model species.1. Dimethyl-phosphate and methyl propyl phosphate anions. J Am Chem Soc 115:1537–1545

    Article  CAS  Google Scholar 

  346. Liang CX, Ewig CS, Stouch TR, Hagler AT (1994) Ab initio studies of lipid model species. 2. Conformational-analysis of inositols. J Am Chem Soc 116:3904–3911

    Article  CAS  Google Scholar 

  347. Liang C et al (1995) Force field studies of cholesterol and cholesteryl acetate crystals and cholesterol–cholesterol intermolecular interactions. J Comp Chem 16:883–897

    Article  CAS  Google Scholar 

  348. Lorentz HA (1881) Ueber die anwendung des satzes vom virial in der kinetischen theorie der gase. Ann Phys 248:127–136

    Article  Google Scholar 

  349. Berthelot D (1898) Sur le mélange des gaz. Comptes Rendus Hebd Séances l’Acad Sci 126:1703–1855

    Google Scholar 

  350. Diaz Peña M, Pando C, Renuncio JA (1982) R. Combination rules for intermolecular potential parameters. I. Rules based on approximations for the long-range dispersion energy. J Chem Phys 76:325

    Article  Google Scholar 

  351. Tang KT, Toennies JP (1986) New combining rules for well parameters and shapes of the van der Waals potential of mixed rare gas systems. Z Phys D 1:91–101

    Article  CAS  Google Scholar 

  352. Kestin J et al (1984) Equilibrium and transport properties of the noble gases and their mixtures at low density. J Phys Chem Ref Data 13:229–303

    Article  CAS  Google Scholar 

  353. Al-Matar AK, Rockstraw DW (2004) A generating equation for mixing rules and two new mixing rules for interatomic potential energy parameters. J Comp Chem 25:660–668

    Article  CAS  Google Scholar 

  354. Desgranges C, Delhommelle J (2014) Evaluation of the grand-canonical partition function using expanded Wang-Landau simulations. III. Impact of combining rules on mixtures properties. J Chem Phys 140:104109

    Article  CAS  PubMed  Google Scholar 

  355. Song W, Rossky PJ, Maroncelli M (2003) Modeling alkane + perfluoroalkane interactions using all-atom potentials: failure of the usual combining rules. J Chem Phys 119:9145

    Article  CAS  Google Scholar 

  356. Reinhold J et al (2014) Molecular dynamics simulations on scattering of single Ar, N2, and CO2 molecules on realistic surfaces. Comput Fluids 97:31–39

    Article  CAS  Google Scholar 

  357. Nemethy G, Scheraga HA (1965) Theoretical determination of sterically allowed conformations of a polypeptide chain by a computer method. Biopolymers 3:155–184

    Article  CAS  Google Scholar 

  358. Allinger NL (2011) Understanding molecular structure from molecular mechanics. J Comput Aided Mol Des 25:295–316

    Article  CAS  PubMed  Google Scholar 

  359. Clementi E, Ranghino G, Scordamaglia R (1977) Intermolecular pontentials: interaction of water with lysozyme. Chem Phys Lett 49:218–224

    Article  CAS  Google Scholar 

  360. Dinur U, Hagler AT (1990) A novel decomposition of torsional potentials into pairwise interactions—a study of energy 2nd derivatives. J Comput Chem 11:1234–1246

    Article  CAS  Google Scholar 

  361. Dinur U, Hagler AT (1989) Determination of atomic point charges and point dipoles from the cartesian derivatives of the molecular dipole-moment and 2nd moments, and from energy 2nd derivatives of planar dimers. I. Theory. J Chem Phys 91:2949–2958

    Article  CAS  Google Scholar 

  362. Ooi T, Scott RA, Vanderkooi G, Scheraga HA (1967) Conformational analysis of macromolecules. IV. Helical structures of poly-l-alanine, poly-l-valine, poly-β-methyl-l-aspartate, poly-γ-methyl-l-glutamate, and poly-l-tyrosine. J Chem Phys 46:4410–4426

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Mike Gilson, for reading parts of the manuscript and helpful discussions and Dr. Ruth Sharon for reading, discussing and valuable help with editing. We also thank Eitan Hagler for help with the figures. Special thanks to the editor, Dr. Terry Stouch for his invitation to write this perspective, encouragement, and endless patience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Hagler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dauber-Osguthorpe, P., Hagler, A.T. Biomolecular force fields: where have we been, where are we now, where do we need to go and how do we get there?. J Comput Aided Mol Des 33, 133–203 (2019). https://doi.org/10.1007/s10822-018-0111-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-018-0111-4

Keywords

Navigation