Computational modeling and in-vitro/in-silico correlation of phospholipid-based prodrugs for targeted drug delivery in inflammatory bowel disease

Abstract

Targeting drugs to the inflamed intestinal tissue(s) represents a major advancement in the treatment of inflammatory bowel disease (IBD). In this work we present a powerful in-silico modeling approach to guide the molecular design of novel prodrugs targeting the enzyme PLA2, which is overexpressed in the inflamed tissues of IBD patients. The prodrug consists of the drug moiety bound to the sn-2 position of phospholipid (PL) through a carbonic linker, aiming to allow PLA2 to release the free drug. The linker length dictates the affinity of the PL-drug conjugate to PLA2, and the optimal linker will enable maximal PLA2-mediated activation. Thermodynamic integration and Weighted Histogram Analysis Method (WHAM)/Umbrella Sampling method were used to compute the changes in PLA2 transition state binding free energy of the prodrug molecule (∆∆Gtr) associated with decreasing/increasing linker length. The simulations revealed that 6-carbons linker is the optimal one, whereas shorter or longer linkers resulted in decreased PLA2-mediated activation. These in-silico results were shown to be in excellent correlation with experimental in-vitro data. Overall, this modern computational approach enables optimization of the molecular design of novel prodrugs, which may allow targeting the free drug specifically to the diseased intestinal tissue of IBD patients.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Dahan A, Zimmermann EM, Ben-Shabat S (2014) Molecules 19(10):16489

    Article  Google Scholar 

  2. 2.

    Rautio J, Kumpulainen H, Heimbach T, Oliyai R, Oh D, Jarvinen T, Savolainen J (2008) Nat Rev Drug Discov 7(3):255

    CAS  Article  Google Scholar 

  3. 3.

    Yu LS (1981) J Clin Pharm Ther 6(4):287

    Article  Google Scholar 

  4. 4.

    Ettmayer P, Amidon GL, Clement B, Testa B (2004) J Med Chem 47(10):2393

    CAS  Article  Google Scholar 

  5. 5.

    Sun J, Dahan A, Amidon GL (2010) J Med Chem 53(2):624

    CAS  Article  Google Scholar 

  6. 6.

    Sun J, Dahan A, Walls ZF, Lai L, Lee KD, Amidon GL (2010) Mol Pharm 7(6):2362

    CAS  Article  Google Scholar 

  7. 7.

    Bai JPF, Hu M, Subramanian P, Mosberg HI, Amidon GL (1992) J Pharm Sci 81(2):113

    CAS  Article  Google Scholar 

  8. 8.

    Dahan A, Wolk O, Yang P, Mittal S, Wu Z, Landowski CP, Amidon GL (2014) Mol Pharm 11(12):4385

    CAS  Article  Google Scholar 

  9. 9.

    Fleisher D, Stewart BH, Amidon GL (1985) Methods Enzymol 112:360

    CAS  Article  Google Scholar 

  10. 10.

    Banerjee PK, Amidon GL (1985) Design of prodrugs. Elsevier, New York, p 93

    Google Scholar 

  11. 11.

    Han H, de Vrueh RL, Rhie JK, Covitz KM, Smith PL, Lee CP, Oh DM, Sadee W, Amidon GL (1998) Pharm Res 15(8):1154

    CAS  Article  Google Scholar 

  12. 12.

    Sabit H, Dahan A, Sun J, Provoda CJ, Lee K-D, Hilfinger JH, Amidon GL (2013) Mol Pharm 10(4):1417

    CAS  Article  Google Scholar 

  13. 13.

    Dahan A, Khamis M, Agbaria R, Karaman R (2012) Expert Opin Drug Deliv 9(8):1001

    CAS  Article  Google Scholar 

  14. 14.

    Han HK, Amidon GL (2000) AAPS PharmSci 2(1): E6

    CAS  Article  Google Scholar 

  15. 15.

    Hoult JR (1986) Drugs 32(Suppl 1):18

    CAS  Article  Google Scholar 

  16. 16.

    Stella VJ, Himmelstein KJ (1980) J Med Chem 23(12):1275

    CAS  Article  Google Scholar 

  17. 17.

    Kesisoglou F, Zimmermann EM (2005) Expert Opin Drug Deliv 2(3):451

    CAS  Article  Google Scholar 

  18. 18.

    Dahan A, Amidon GL, Zimmermann EM (2010) Expert Rev Clin Immunol 6(4):543

    CAS  Article  Google Scholar 

  19. 19.

    Biasi F, Leonarduzzi G, Oteiza PI, Poli G (2013) Antioxid Redox Signal 19(14):1711

    CAS  Article  Google Scholar 

  20. 20.

    Wolk O, Epstein S, Ioffe-Dahan V, Ben-Shabat S, Dahan A (2013) Expert Opin Drug Deliv 10(9):1275

    CAS  Article  Google Scholar 

  21. 21.

    Kurz M, Scriba GK (2000) Chem Phys Lipids 107(2):143

    CAS  Article  Google Scholar 

  22. 22.

    Haapamäki MM, Grönroos JM, Nurmi H, Alanen K, Kallajoki M, Nevalainen TJ (1997) Gut 40(1):95

    Article  Google Scholar 

  23. 23.

    Lilja I, Smedh K, Olaison G, Sjödahl R, Tagesson C, Gustafson-Svärd C (1995) Gut 37(3):380

    CAS  Article  Google Scholar 

  24. 24.

    Minami T, Tojo H, Shinomura Y, Matsuzawa Y, Okamoto M (1994) Gut 35(11):1593

    CAS  Article  Google Scholar 

  25. 25.

    Haapamaki MM, Gronroos JM, Nurmi H, Irjala K, Alanen KA, Nevalainen TJ (1999) Scand J Clin Lab Invest 59(4):279

    CAS  Article  Google Scholar 

  26. 26.

    Andresen TL, Jensen SS, Kaasgaard T, Jorgensen K (2005) Curr Drug Deliv 2(4):353

    CAS  Article  Google Scholar 

  27. 27.

    Hansen AH, Mouritsen OG, Arouri A (2015) Int J Pharm 491(1–2):49

    CAS  Article  Google Scholar 

  28. 28.

    Lattig J, Bohl M, Fischer P, Tischer S, Tietbohl C, Menschikowski M, Gutzeit HO, Metz P, Pisabarro MT (2007) J Comput Aided Mol Des 21(8):473

    Article  Google Scholar 

  29. 29.

    Dahan A, Ben-Shabat S, Cohen N, Keinan S, Kurnikov I, Aponick A, Zimmermann EM (2016) Curr Top Med Chem 16(23):2543

    CAS  Article  Google Scholar 

  30. 30.

    Dahan A, Duvdevani R, Dvir E, Elmann A, Hoffman A (2007) J Control Release 119(1):86

    CAS  Article  Google Scholar 

  31. 31.

    Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) SoftwareX 1–2:19

    Article  Google Scholar 

  32. 32.

    Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA (1992) J Comput Chem 13(8):1011

    CAS  Article  Google Scholar 

  33. 33.

    Straatsma TP, Berendsen HJC (1988) J Chem Phys 89(9):5876

    CAS  Article  Google Scholar 

  34. 34.

    Chodera JD, Mobley DL, Shirts MR, Dixon RW, Branson K, Pande VS (2011) Curr Opin Struct Biol 21(2):150

    CAS  Article  Google Scholar 

  35. 35.

    Dvir E, Friedman JE, Lee JY, Koh JY, Younis F, Raz S, Shapiro I, Hoffman A, Dahan A, Rosenberg G, Angel I, Kozak A, Duvdevani R (2006) J Pharmacol Exp Ther 318(3):1248

    CAS  Article  Google Scholar 

  36. 36.

    Dahan A, Hoffman A (2007) Drug Metab Dispos 35(2):321

    CAS  Article  Google Scholar 

  37. 37.

    Dvir E, Elman A, Simmons D, Shapiro I, Duvdevani R, Dahan A, Hoffman A, Friedman JE (2007) CNS Drug Rev 13(2):260

    CAS  Article  Google Scholar 

  38. 38.

    Dahan A, Duvdevani R, Shapiro I, Elmann A, Finkelstein E, Hoffman A (2008) J Control Release 126(1):1

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was funded through the US-Israel Binational Science Foundation (BSF) Grant No: 2015365. This work is a part of Ms. Milica Markovic PhD dissertation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Arik Dahan.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dahan, A., Markovic, M., Keinan, S. et al. Computational modeling and in-vitro/in-silico correlation of phospholipid-based prodrugs for targeted drug delivery in inflammatory bowel disease. J Comput Aided Mol Des 31, 1021–1028 (2017). https://doi.org/10.1007/s10822-017-0079-5

Download citation

Keywords

  • Drug targeting
  • Inflammatory bowel disease (IBD)
  • Molecular dynamics
  • Phospholipase A2 (PLA2)
  • Prodrug
  • Thermodynamic integration
  • Umbrella sampling/WHAM