Journal of Computer-Aided Molecular Design

, Volume 32, Issue 1, pp 251–264 | Cite as

Combining self- and cross-docking as benchmark tools: the performance of DockBench in the D3R Grand Challenge 2

  • Veronica Salmaso
  • Mattia Sturlese
  • Alberto Cuzzolin
  • Stefano MoroEmail author


Molecular docking is a powerful tool in the field of computer-aided molecular design. In particular, it is the technique of choice for the prediction of a ligand pose within its target binding site. A multitude of docking methods is available nowadays, whose performance may vary depending on the data set. Therefore, some non-trivial choices should be made before starting a docking simulation. In the same framework, the selection of the target structure to use could be challenging, since the number of available experimental structures is increasing. Both issues have been explored within this work. The pose prediction of a pool of 36 compounds provided by D3R Grand Challenge 2 organizers was preceded by a pipeline to choose the best protein/docking-method couple for each blind ligand. An integrated benchmark approach including ligand shape comparison and cross-docking evaluations was implemented inside our DockBench software. The results are encouraging and show that bringing attention to the choice of the docking simulation fundamental components improves the results of the binding mode predictions.


DockBench D3R Grand Challenge 2 Molecular docking Docking benchmark Cross-docking Self-docking 



MMS lab is also very grateful to Chemical Computing Group, OpenEye, and Acellera for the scientific and technical partnership. S.M. participates in the European COST Action CM1207 (GLISTEN). Finally, MMS lab is extremely grateful to the organizers of the D3R Grand Challenge for the perfect organization of the event.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10822_2017_51_MOESM1_ESM.docx (8.2 mb)
Supplementary material 1 (DOCX 8367 KB)


  1. 1.
    Talele TT, Khedkar SA, Rigby AC (2010) Successful applications of computer aided drug discovery: moving drugs from concept to the clinic. Curr Top Med Chem 10:127–141CrossRefGoogle Scholar
  2. 2.
    Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE (1982) A geometric approach to macromolecule–ligand interactions. J Mol Biol 161:269–288CrossRefGoogle Scholar
  3. 3.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242CrossRefGoogle Scholar
  4. 4.
    McGovern SL, Shoichet BK (2003) Information decay in molecular docking screens against holo, apo, and modeled conformations of enzymes. J Med Chem 46:2895–2907CrossRefGoogle Scholar
  5. 5.
    Directory of in silico Drug Design tools. Accessed 1 Jun 2017
  6. 6.
    Claudel T, Staels B, Kuipers F (2005) The Farnesoid X receptor: a molecular link between bile acid and lipid and glucose metabolism. Arterioscler Thromb Vasc Biol 25:2020–2030CrossRefGoogle Scholar
  7. 7.
    Salmaso V, Sturlese M, Cuzzolin A, Moro S (2016) DockBench as docking selector tool: the lesson learned from D3R Grand Challenge 2015. J Comput Aided Mol Des 30:773–789CrossRefGoogle Scholar
  8. 8.
    Gathiaka S, Liu S, Chiu M et al (2016) D3R grand challenge 2015: evaluation of protein-ligand pose and affinity predictions. J Comput Aided Mol Des 30:651–668CrossRefGoogle Scholar
  9. 9.
    Cuzzolin A, Sturlese M, Malvacio I, Ciancetta A, Moro S (2015) DockBench: an integrated informatic platform bridging the gap between the robust validation of docking protocols and virtual screening simulations. Molecules 20:9977–9993CrossRefGoogle Scholar
  10. 10.
    Kollman PA, Massova I, Reyes C et al (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897CrossRefGoogle Scholar
  11. 11.
    Harvey MJ, Giupponi G, Fabritiis GD (2009) ACEMD: accelerating biomolecular dynamics in the microsecond time scale. J Chem Theory Comput 5:1632–1639CrossRefGoogle Scholar
  12. 12.
    Chemical Computing Group (CCG) Inc (2016) Molecular operating environment (MOE)Google Scholar
  13. 13.
    Labute P (2009) Protonate3D: assignment of ionization states and hydrogen coordinates to macromolecular structures. Proteins 75:187–205CrossRefGoogle Scholar
  14. 14.
    Schrödinger (2017) Schrödinger release 2017-1: LigPrep. New York, NYGoogle Scholar
  15. 15.
    RDKit: Open-source cheminformatics. Accessed 28 May 2017
  16. 16.
    Hawkins PCD, Skillman AG, Warren GL, Ellingson BA, Stahl MT (2010) Conformer generation with OMEGA: algorithm and validation using high quality structures from the Protein Databank and Cambridge Structural Database. J Chem Inf Model 50:572–584CrossRefGoogle Scholar
  17. 17.
    Hawkins PCD, Skillman AG, Nicholls A (2007) Comparison of shape-matching and docking as virtual screening tools. J Med Chem 50:74–82CrossRefGoogle Scholar
  18. 18.
    Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791CrossRefGoogle Scholar
  19. 19.
    Friesner RA, Banks JL, Murphy RB et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749CrossRefGoogle Scholar
  20. 20.
    Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47:1750–1759CrossRefGoogle Scholar
  21. 21.
    Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD (2003) Improved protein-ligand docking using GOLD. Proteins 52:609–623CrossRefGoogle Scholar
  22. 22.
    Korb O, Stützle T, Exner TE (2007) An ant colony optimization approach to flexible protein–ligand docking. Swarm Intell 1:115–134CrossRefGoogle Scholar
  23. 23.
    Korb O, Stützle T, Exner TE (2009) Empirical scoring functions for advanced protein-ligand docking with PLANTS. J Chem Inf Model 49:84–96CrossRefGoogle Scholar
  24. 24.
    Ruiz-Carmona S, Alvarez-Garcia D, Foloppe N, Garmendia-Doval AB, Juhos S, Schmidtke P, Barril X, Hubbard RE, Morley SD (2014) rDock: a fast, versatile and open source program for docking ligands to proteins and nucleic acids. PLoS Comput Biol 10:e1003571CrossRefGoogle Scholar
  25. 25.
    Case DA, Babin V, Berryman JT, Betz RM, Cai Q, Cerutti DS, Cheatham TE III, Darden TA, Duke RE, Gohlke H, Goetz AW, Gusarov S, Homeyer N, Janowski P, Kaus J, Kolossváry I, Kovalenko A, Lee TS, LeGrand S, Luchko T, Luo R, Madej B, Merz KM, Paesani F, Roe DR, Roitberg A, Sagui C, Salomon-Ferrer R, Seabra G, Simmerling CL, Smith W, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Kollman PA (2014) AMBER 14. University of California, San FranciscoGoogle Scholar
  26. 26.
    Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron 36:3219–3228CrossRefGoogle Scholar
  27. 27.
    Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174CrossRefGoogle Scholar
  28. 28.
    Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J Chem Phys 98:10089CrossRefGoogle Scholar
  29. 29.
    Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577CrossRefGoogle Scholar
  30. 30.
    Onufriev A, Bashford D, Case DA (2004) Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins 55:383–394CrossRefGoogle Scholar
  31. 31.
    Weiser J, Shenkin PS, Still CW (1999) Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). J Comput ChemGoogle Scholar
  32. 32.
    Downes M, Verdecia MA, Roecker AJ et al (2003) A chemical, genetic, and structural analysis of the nuclear bile acid receptor FXR. Mol Cell 11:1079–1092CrossRefGoogle Scholar
  33. 33.
    Soisson SM, Parthasarathy G, Adams AD, Sahoo S, Sitlani A, Sparrow C, Cui J, Becker JW (2008) Identification of a potent synthetic FXR agonist with an unexpected mode of binding and activation. Proc Natl Acad Sci USA 105:5337–5342CrossRefGoogle Scholar
  34. 34.
    Akwabi-Ameyaw A, Bass JY, Caldwell RD et al (2008) Conformationally constrained farnesoid X receptor (FXR) agonists: naphthoic acid-based analogs of GW 4064. Bioorg Med Chem Lett 18:4339–4343CrossRefGoogle Scholar
  35. 35.
    Flatt B, Martin R, Wang T-L et al (2009) Discovery of XL335 (WAY-362450), a highly potent, selective, and orally active agonist of the farnesoid X receptor (FXR). J Med Chem 52:904–907CrossRefGoogle Scholar
  36. 36.
    Feng S, Yang M, Zhang Z et al (2009) Identification of an N-oxide pyridine GW4064 analog as a potent FXR agonist. Bioorg Med Chem Lett 19:2595–2598CrossRefGoogle Scholar
  37. 37.
    Bass JY, Caldwell RD, Caravella JA et al (2009) Substituted isoxazole analogs of farnesoid X receptor (FXR) agonist GW4064. Bioorg Med Chem Lett 19:2969–2973CrossRefGoogle Scholar
  38. 38.
    Akwabi-Ameyaw A, Bass JY, Caldwell RD et al (2009) FXR agonist activity of conformationally constrained analogs of GW 4064. Bioorg Med Chem Lett 19:4733–4739CrossRefGoogle Scholar
  39. 39.
    Lundquist JT, Harnish DC, Kim CY et al (2010) Improvement of physiochemical properties of the tetrahydroazepinoindole series of farnesoid X receptor (FXR) agonists: beneficial modulation of lipids in primates. J Med Chem 53:1774–1787CrossRefGoogle Scholar
  40. 40.
    Richter HGF, Benson GM, Blum D et al (2011) Discovery of novel and orally active FXR agonists for the potential treatment of dyslipidemia & diabetes. Bioorg Med Chem Lett 21:191–194CrossRefGoogle Scholar
  41. 41.
    Richter HGF, Benson GM, Bleicher KH et al (2011) Optimization of a novel class of benzimidazole-based farnesoid X receptor (FXR) agonists to improve physicochemical and ADME properties. Bioorg Med Chem Lett 21:1134–1140CrossRefGoogle Scholar
  42. 42.
    Bass JY, Caravella JA, Chen L et al (2011) Conformationally constrained farnesoid X receptor (FXR) agonists: heteroaryl replacements of the naphthalene. Bioorg Med Chem Lett 21:1206–1213CrossRefGoogle Scholar
  43. 43.
    Akwabi-Ameyaw A, Caravella JA, Chen L et al (2011) Conformationally constrained farnesoid X receptor (FXR) agonists: alternative replacements of the stilbene. Bioorg Med Chem Lett 21:6154–6160CrossRefGoogle Scholar
  44. 44.
    Xu X, Xu X, Liu P, Zhu Z, Chen J, Fu H, Chen L, Hu L, Shen X (2015) Structural basis for SMALL MOLECULE NDB (N-benzyl-N-(3-(tert-butyl)-4-hydroxyphenyl)-2,6-dichloro-4-(dimethylamino) benzamide) as a selective antagonist of farnesoid X receptor α (FXRα) in stabilizing the homodimerization of the receptor. J Biol Chem 290:19888–19899CrossRefGoogle Scholar
  45. 45.
    Kudlinzki D, Merk D, Linhard VL, Saxena K, Sreeramulu S, Nilsson E, Dekker N, Wissler L, Bamberg K, Schubert-Zsilavecz M, Schwalbe H (2015) FXR with CDCA and NCoA-2 peptide. Accessed 23 Aug 2017
  46. 46.
    Jin L, Feng X, Rong H et al (2013) The antiparasitic drug ivermectin is a novel FXR ligand that regulates metabolism. Nat Commun 4:1937Google Scholar
  47. 47.
    Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830Google Scholar
  48. 48.
    Ester M, Kriegel H-P, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd international conference on knowledge discovery and data mining. Portland, OR, pp 226–231Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological SciencesUniversity of PadovaPadovaItaly

Personalised recommendations