Skip to main content

Advertisement

Log in

A molecular dynamics simulation study decodes the early stage of the disassembly process abolishing the human SAMHD1 function

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The human sterile alpha motif SAM and HD domain-containing protein 1 (SAMHD1) restricts in non-cycling cells type the infection of a large range of retroviruses including HIV-1, reducing the intracellular pool concentration of deoxynucleoside triphosphates (dNTPs) required for the reverse transcription of the viral genome. The enzyme is in equilibrium between different forms depending on bound cofactors and substrate. In this work, two SAMHD1 three-dimensional models have been investigated through classical molecular dynamics simulation, to define the role of cofactors and metal ions in the association of the tetrameric active form. A detailed analysis of the inter-subunit interactions, taking place at the level of helix 13, indicates that removal of metal ions and cofactors induces an asymmetric loosening of the monomer–monomer interface leading to the formation of a loose tetramer where the two dimeric interfaces are weakened in different way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Goldstone DC, Ennis-Adeniran V, Hedden JJ, Groom HC, Rice GI, Christodoulou E, Walker PA, Kelly G, Haire LF, Yap MW, de Carvalho LP, Stoye JP, Crow YJ, Taylor IA, Webb M (2011) HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 480:379–382

    Article  CAS  Google Scholar 

  2. Yan J, Kaur S, DeLucia M, Hao C, Mehrens, J, Wang, C, Golczak M, Palczewski K, Gronenborn AM, Ahn J, Skowronsk S (2013) Tetramerization of SAMHD1 is required for biological activity and inhibition of HIV infection. J Biol Chem 288:10406–10417

    Article  CAS  Google Scholar 

  3. Lahouassa H, Daddacha W, Hofmann H, Ayinde D, Logue EC, Dragin L, Bloch N, Maudet C, Bertrand M, Gramberg T, Pancino G, Priet S, Canard B, Laguette N, Benkirane M, Transy C, Landau NR, Kim B, Margottin-Goguet F (2012) SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat Immunol 13:223–228

    Article  CAS  Google Scholar 

  4. Kim B, Nguyen LA, Daddacha W, Hollenbaugh JA (2012) Tight interplay among SAMHD1 protein level, cellular dNTP levels, and HIV-1 proviral DNA synthesis kinetics in human primary monocyte-derived macrophages. J Biol Chem 287:21570–21574

    Article  CAS  Google Scholar 

  5. Descours B, Cribier A, Chable-Bessia C, Ayinde D, Rice G, Crow Y, Yatim A, Schawartz O, Laguette N, Benkirane M (2012) SAMHD1 restricts HIV-1 reverse transcription in quiescent CD4+ T-cells. Retrovirology 9:87

    Article  CAS  Google Scholar 

  6. Luban J (2012) Innate immune sensing of HIV-1 by dendritic cells. Cell Host Microbe 12:408–418

    Article  CAS  Google Scholar 

  7. Kim ET, White TE, Brandariz-Núñez A, Diaz-Griffero F, Weitzman MD (2013) SAMHD1 restricts herpes simplex virus 1 in macrophages by limiting DNA replication. J Virol 87:12949–12956

    Article  CAS  Google Scholar 

  8. Rice GI, Bond J, Asipu A, Brunette RL, Manfield IW, Carr IM, Fuller JC, Jackson RM, Lamb T, Briggs TA, Ali M, Gornall H, Couthard LR, Aeby A, Attard-Montalto SP, Bertini E, Bodemer C, Brockmann K, Brueton LA, Corry PC, Desguerre I, Fazzi E, Cazorla AG, Gener B, Hamel BCJ, Heiberg A, Hunter M, Van der Knaap MS, Kumar R, Lagae L, Landrieu PG, Lourenco CM, Marom D, McDermott MF, Van der Merwe W, Orcesi S, Prendiville JS, Rasmussen M, Shalev SA, Soler DM, Shinawi M, Spiegel R, Tan TY, Vanderver A, Wakeling EL, Wassmer E, Whittaker E, Lebon P, Stetson DB, Bonthron DT, Crow YJ (2009) Mutations involved in Aicardi-Goutières syndrome implicate SAMHD1 as regulator of the innate immune response. Nat Genet 41:829–832

    Article  CAS  Google Scholar 

  9. Beloglazova N, Flick R, Tchigvintsev A, Brown G, Popovic A, Nocek B, Yakunin AF (2013) Nuclease activity of the human SAMHD1 protein implicated in the aicardi-goutieres syndrome and HIV-1 restriction. J Biol Chem 288:8101–8110

    Article  CAS  Google Scholar 

  10. Clifford R, Louis T, Robbe P, Ackroyd S, Burns A, Timbs AT, Wright Colopy G, Dreau H, Sigaux F, Judde JG, Rotger M, Telenti A, Lin YL, Pasero P, Maelfait J, Titsias M, Cohen DR, Henderson SJ, Ross MT, Bentley D, Hillmen P, Pettitt A, Rehwinkel J, Knight SJL, Taylor JC, Crow YJ, Benkirane M, Schuh A (2014) SAMHD1 is mutated recurrently in chronic lymphocytic leukemia and is involved in response to DNA damage. Blood 123:1021–1031

    Article  CAS  Google Scholar 

  11. Kim CA, Bowie JU (2003) SAM domains: uniform structure, diversity of function. Trends Biochem Sci 28:625–628

    Article  CAS  Google Scholar 

  12. Qiao F, Bowie JU (2005) The many faces of SAM. Sci STKE. doi:10.1126/stke.2862005re7

    Google Scholar 

  13. White TE, Brandariz-Nuñez A, Carlos Valle-Casuso J, Amie S, Nguyen L, Kim B, Brojatsch J, Diaz-Griffero F (2013) Contribution of SAM and HD domains to retroviral restriction mediated by human SAMHD1. Virology 436:81–90

    Article  CAS  Google Scholar 

  14. Arnold LH, Groom HCT, Kunzelmann S, Schwefel D, Caswell SJ, Ordonez P, Mann MC, Rueschenbaum S, Goldstone DC, Pennell S, Howell SA, Stoye JP, Webb M, Taylor IA, Bishop KN (2015) Phospho-dependent regulation of SAMHD1 oligomerisation couples catalysis and restriction. PLoS Pathog. doi:10.1371/journal.ppat.1005194

    Google Scholar 

  15. Zhu CF, Wei W, Peng X, Dong YH, Gong Y, Yu XF (2015) The mechanism of substrate-controlled allosteric regulation of SAMHD1 activated by GTP. Acta Crystallogr Sect D 71:516–524

    Article  CAS  Google Scholar 

  16. Amie SM, Bambara RA, Kim B (2013) GTP is the primary activator of the anti-HIV restriction factor SAMHD1. J Biol Chem 288:25001–25006

    Article  CAS  Google Scholar 

  17. Li Y, Kong J, Peng X, Hou W, Qin X, Yu XF (2015) Structural insights into the high-efficiency catalytic mechanism of the sterile α-motif/histidine aspartate domain-containing protein. J Biol Chem 290:29428–29437

    Article  CAS  Google Scholar 

  18. Koharudin LMI, Wu Y, DeLucia M, Mehrens J, Gronenborn AM, Ahn J (2014) Structural basis of allosteric activation of sterile α-motif and histidine-aspartate domain-containing protein 1 (SAMHD1) by nucleoside triphosphates. J Biol Chem 289:32617–32627

    Article  CAS  Google Scholar 

  19. Ji X, Tang C, Zhao QQ, Wang W, Xiong Y (2014) Structural basis of cellular dNTP regulation by SAMHD1. Proc Natl Acad Sci USA 111:E4305–E4314

    Article  CAS  Google Scholar 

  20. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  Google Scholar 

  21. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  Google Scholar 

  22. Goroncy AK, Tochio N, Koshiba S, Watanabe S, Harada T, Kigawa T, Yokoyama S (2007) Solution structure of the N-terminal SAM-domain of the SAM domain and HD domain containing protein 1 (Dendritic cell-derived IFNG-induced protein) (DCIP) (Monocyte protein 5) (MOP-5)

  23. Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, Pieper U, Sali A (2007) In: Comparative protein structure modeling using MODELLER. Curr Protoc Protein Sci Chap. 2, Unit 2.9

  24. Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688

    Article  CAS  Google Scholar 

  25. Salomon-Ferrer R, Case DA, Walker RC (2013) An overview of the Amber biomolecular simulation package. Wiley Interdiscip Rev 3:198–210

    CAS  Google Scholar 

  26. Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11:3696–3713

    Article  CAS  Google Scholar 

  27. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926

    Article  CAS  Google Scholar 

  28. Peters MB, Yang Y, Wang B, Füsti-Molnár L, Weaver MN, Merz KM (2010) Structural survey of zinc-containing proteins and development of the zinc AMBER force field (ZAFF). J Chem Theory Comput 6:2935–2947

    Article  CAS  Google Scholar 

  29. Cannon JF (1993) AMBER force-field parameters for guanosine triphosphate and its hido and methylene analogs. J Comput Chem 14:995–1005

    Article  CAS  Google Scholar 

  30. Dupradeau FY, Cézard C, Lelong R, Stanislawiak E, Pêcher J, Delepine JC, Cieplak P (2008) R.E.DD.B.: a database for RESP and ESP atomic charges, and force field libraries. Nucleic Acids Res 36:D360–D367

    Article  CAS  Google Scholar 

  31. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  32. Sekimoto K (1998) Langevin Equation and Thermodynamics. Prog Theor Phys Suppl 130:17–27

    Article  CAS  Google Scholar 

  33. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  34. Abraham MJ, Murtola T, Schulz R, Pàall S, Smith JC, Hess B, Lindah E (2015) Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. Software X 1–2:19–25

    Google Scholar 

  35. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  36. Zhu C, Gao W, Zhao K, Qin X, Zhang Y, Peng X, Zhang L, Dong Y, Zhang W, Li P, Wei W, Gong Y, Yu XF (2013) Structural insight into dGTP-dependent activation of tetrameric SAMHD1 deoxynucleoside triphosphate triphosphohydrolase. Nat Commun. doi:10.1038/ncomms3722

    Google Scholar 

  37. David CC, Jacobs DJ (2014) Principal component analysis: a method for determining the essential dynamics of proteins. Methods Mol Biol 1084:193–226

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Desideri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardamone, F., Iacovelli, F., Chillemi, G. et al. A molecular dynamics simulation study decodes the early stage of the disassembly process abolishing the human SAMHD1 function. J Comput Aided Mol Des 31, 497–505 (2017). https://doi.org/10.1007/s10822-017-0014-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-017-0014-9

Keywords

Navigation