Skip to main content

Improved pose and affinity predictions using different protocols tailored on the basis of data availability

Abstract

The D3R 2015 grand drug design challenge provided a set of blinded challenges for evaluating the applicability of our protocols for pose and affinity prediction. In the present study, we report the application of two different strategies for the two D3R protein targets HSP90 and MAP4K4. HSP90 is a well-studied target system with numerous co-crystal structures and SAR data. Furthermore the D3R HSP90 test compounds showed high structural similarity to existing HSP90 inhibitors in BindingDB. Thus, we adopted an integrated docking and scoring approach involving a combination of both pharmacophoric and heavy atom similarity alignments, local minimization and quantitative structure activity relationships modeling, resulting in the reasonable prediction of pose [with the root mean square deviation (RMSD) values of 1.75 Å for mean pose 1, 1.417 Å for the mean best pose and 1.85 Å for the mean all poses] and affinity (ROC AUC = 0.702 at 7.5 pIC50 cut-off and R = 0.45 for 180 compounds). The second protein, MAP4K4, represents a novel system with limited SAR and co-crystal structure data and little structural similarity of the D3R MAP4K4 test compounds to known MAP4K4 ligands. For this system, we implemented an exhaustive pose and affinity prediction protocol involving docking and scoring using the PLANTS software which considers side chain flexibility together with protein–ligand fingerprints analysis assisting in pose prioritization. This protocol through fares poorly in pose prediction (with the RMSD values of 4.346 Å for mean pose 1, 4.69 Å for mean best pose and 4.75 Å for mean all poses) and produced reasonable affinity prediction (AUC = 0.728 at 7.5 pIC50 cut-off and R = 0.67 for 18 compounds, ranked 1st among 80 submissions).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Prathipati P, Dixit A, Saxena AK (2007) Curr Comput Aided Mol Des 92:29

    Google Scholar 

  2. Prathipati P, Mizuguchi K (2016) Curr Top Med Chem 16(9):1009

    CAS  Article  Google Scholar 

  3. Walters WP, Stahl MT, Murcko MA (1998) Drug Discov Today 3(4):160

    CAS  Article  Google Scholar 

  4. Prathipati P, Mizuguchi K (2016) J Chem Inf Model 56(6):974

  5. Prathipati P, Pandey G, Saxena AK (2005) J Chem Inf Model 45(1):136

    CAS  Article  Google Scholar 

  6. Prathipati P, Saxena AK (2005) J Comput Aided Mol Des 19(2):93

    CAS  Article  Google Scholar 

  7. Prathipati P, Saxena AK (2006) J Chem Inf Model 46(1):39

    CAS  Article  Google Scholar 

  8. Barillari C, Marcou G, Rognan D (2008) J Chem Inf Model 48(7):1396

    CAS  Article  Google Scholar 

  9. Radifar M, Yuniarti N, Istyastono EP (2013) Bioinformation 9(6):325

    Article  Google Scholar 

  10. Brewerton SC (2008) Curr Opin Drug Discov Dev 11(3):356

    CAS  Google Scholar 

  11. Da C, Kireev D (2014) J Chem Inf Model 54(9):2555

    CAS  Article  Google Scholar 

  12. Deng Z, Chuaqui C, Singh J (2004) J Med Chem 47(2):337

    CAS  Article  Google Scholar 

  13. Roy KK, Singh S, Saxena AK (2011) Mol Divers 15(2):477

    CAS  Article  Google Scholar 

  14. Saxena AK, Saxena S, Chaudhaery SS (2010) SAR QSAR Environ Res 21(1):1

    CAS  Article  Google Scholar 

  15. Saxena S, Chaudhaery SS, Varshney K, Saxena AK (2010) SAR QSAR Environ Res 21(5–6):445

    CAS  Article  Google Scholar 

  16. Verkhivker GM, Dixit A, Morra G, Colombo G (2009) Curr Top Med Chem 9(15):1369

    CAS  Article  Google Scholar 

  17. Crawford TD, Ndubaku CO, Chen H, Boggs JW, Bravo BJ, Delatorre K, Giannetti AM, Gould SE, Harris SF, Magnuson SR, McNamara E, Murray LJ, Nonomiya J, Sambrone A, Schmidt S, Smyczek T, Stanley M, Vitorino P, Wang L, West K, Wu P, Ye W (2014) J Med Chem 57(8):3484

    CAS  Article  Google Scholar 

  18. Wang L, Stanley M, Boggs JW, Crawford TD, Bravo BJ, Giannetti AM, Harris SF, Magnuson SR, Nonomiya J, Schmidt S, Wu P, Ye W, Gould SE, Murray LJ, Ndubaku CO, Chen H (2014) Bioorg Med Chem Lett 24(18):4546

    CAS  Article  Google Scholar 

  19. Langfelder P, Horvath S (2008) BMC Bioinf 9(1471–2105):559

    Article  Google Scholar 

  20. Prathipati P, Ma NL, Keller TH (2008) J Chem Inf Model 48(12):2362

    CAS  Article  Google Scholar 

  21. Rogers D, Hahn M (2010) J Chem Inf Model 50(5):742

    CAS  Article  Google Scholar 

  22. Tosco P, Balle T, Shiri F (2011) J Comput Aided Mol Des 25(8):777

    CAS  Article  Google Scholar 

  23. Koes DR, Baumgartner MP, Camacho CJ (2013) J Chem Inf Model 53(8):1893

    CAS  Article  Google Scholar 

  24. Friedman J, Hastie T, Tibshirani R (2010) J Stat Softw 33(1):1

    Article  Google Scholar 

  25. Hinselmann G, Rosenbaum L, Jahn A, Fechner N, Zell A (2011) J Cheminform 3(1):3

    CAS  Article  Google Scholar 

  26. Boughorbel S, Al-Ali R, Elkum N (2016) PLoS One 11(1):e0146413

    Article  Google Scholar 

  27. Korb O, Stutzle T, Exner TE (2009) J Chem Inf Model 49(1):84

    CAS  Article  Google Scholar 

  28. Smith RD, Dunbar JB Jr, Ung PM, Esposito EX, Yang CY, Wang S, Carlson HA (2011) J Chem Inf Model 51(9):2115

    CAS  Article  Google Scholar 

  29. Sunseri J, Ragoza M, Collins J, Koes DR (2016) J Comput Aided Mol Des. doi:10.1007/s10822-016-9960-x

    Google Scholar 

  30. Ye Z, Baumgartner MP, Wingert BM, Camacho CJ (2016) J Comput Aided Mol Des. doi:10.1007/s10822-016-9941-0

  31. Damm-Ganamet KL, Smith RD, Dunbar JB Jr, Stuckey JA, Carlson HA (2013) J Chem Inf Model 53(8):1853

    CAS  Article  Google Scholar 

  32. Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK (2007) Nucleic Acids Res 35(Database issue):D198

    CAS  Article  Google Scholar 

  33. McCammon JA, Gelin BR, Karplus M (1977) Nature 267(5612):585

    CAS  Article  Google Scholar 

  34. Kontoyianni M, McClellan LM, Sokol GS (2004) J Med Chem 47(3):558

    CAS  Article  Google Scholar 

  35. Warren GL, Andrews CW, Capelli AM, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishoff CE, Head MS (2006) J Med Chem 49(20):5912

    CAS  Article  Google Scholar 

  36. Leach AR, Shoichet BK, Peishoff CE (2006) J Med Chem 49(20):5851

    CAS  Article  Google Scholar 

  37. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) Genome Biol 4(5):P3

    Article  Google Scholar 

  38. Yan A, Grant GH, Richards WG (2008) J R Soc Interface 5(Suppl 3):S199

    CAS  Article  Google Scholar 

  39. Wright L, Barril X, Dymock B, Sheridan L, Surgenor A, Beswick M, Drysdale M, Collier A, Massey A, Davies N, Fink A, Fromont C, Aherne W, Boxall K, Sharp S, Workman P, Hubbard RE (2004) Chem Biol 11(6):775

    CAS  Article  Google Scholar 

  40. Roe SM, Prodromou C, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1999) J Med Chem 42(2):260

    CAS  Article  Google Scholar 

  41. Chen Y, Shoichet BK (2009) Nat Chem Biol 5(5):358

    CAS  Article  Google Scholar 

  42. Marcou G, Rognan D (2007) J Chem Inf Model 47(1):195

    CAS  Article  Google Scholar 

  43. Hubbard RE, Chen I, Davis B (2007) Curr Opin Drug Discov Devel 10(3):289

    CAS  Google Scholar 

  44. Klebe G (2006) Drug Discov Today 11(13–14):580

    CAS  Article  Google Scholar 

  45. Kumar A, Zhang KY (2016) J Comput Aided Mol Des. doi:10.1007/s10822-016-9931-2

    Google Scholar 

  46. Dunbar JB Jr, Smith RD, Damm-Ganamet KL, Ahmed A, Esposito EX, Delproposto J, Chinnaswamy K, Kang YN, Kubish G, Gestwicki JE, Stuckey JA, Carlson HA (2013) J Chem Inf Model 53(8):1842

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was in part supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (Grant Numbers 25430186 and 25293079) and from Japan Agency for Medical Research and Development (“The adjuvant database project Grant Number 16ak0101010h0005”) to K.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Prathipati.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prathipati, P., Nagao, C., Ahmad, S. et al. Improved pose and affinity predictions using different protocols tailored on the basis of data availability. J Comput Aided Mol Des 30, 817–828 (2016). https://doi.org/10.1007/s10822-016-9982-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-016-9982-4

Keywords

  • Data-optimal protocol
  • Kinetic stability
  • Thermodynamic stability
  • Docking
  • Scoring
  • QSAR
  • GLMNET