Journal of Computer-Aided Molecular Design

, Volume 30, Issue 9, pp 817–828 | Cite as

Improved pose and affinity predictions using different protocols tailored on the basis of data availability

  • Philip Prathipati
  • Chioko Nagao
  • Shandar Ahmad
  • Kenji Mizuguchi
Article

Abstract

The D3R 2015 grand drug design challenge provided a set of blinded challenges for evaluating the applicability of our protocols for pose and affinity prediction. In the present study, we report the application of two different strategies for the two D3R protein targets HSP90 and MAP4K4. HSP90 is a well-studied target system with numerous co-crystal structures and SAR data. Furthermore the D3R HSP90 test compounds showed high structural similarity to existing HSP90 inhibitors in BindingDB. Thus, we adopted an integrated docking and scoring approach involving a combination of both pharmacophoric and heavy atom similarity alignments, local minimization and quantitative structure activity relationships modeling, resulting in the reasonable prediction of pose [with the root mean square deviation (RMSD) values of 1.75 Å for mean pose 1, 1.417 Å for the mean best pose and 1.85 Å for the mean all poses] and affinity (ROC AUC = 0.702 at 7.5 pIC50 cut-off and R = 0.45 for 180 compounds). The second protein, MAP4K4, represents a novel system with limited SAR and co-crystal structure data and little structural similarity of the D3R MAP4K4 test compounds to known MAP4K4 ligands. For this system, we implemented an exhaustive pose and affinity prediction protocol involving docking and scoring using the PLANTS software which considers side chain flexibility together with protein–ligand fingerprints analysis assisting in pose prioritization. This protocol through fares poorly in pose prediction (with the RMSD values of 4.346 Å for mean pose 1, 4.69 Å for mean best pose and 4.75 Å for mean all poses) and produced reasonable affinity prediction (AUC = 0.728 at 7.5 pIC50 cut-off and R = 0.67 for 18 compounds, ranked 1st among 80 submissions).

Keywords

Data-optimal protocol Kinetic stability Thermodynamic stability Docking Scoring QSAR GLMNET 

Notes

Acknowledgments

This work was in part supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (Grant Numbers 25430186 and 25293079) and from Japan Agency for Medical Research and Development (“The adjuvant database project Grant Number 16ak0101010h0005”) to K.M.

Supplementary material

10822_2016_9982_MOESM1_ESM.xlsx (2.4 mb)
Supplementary material 1 (XLSX 2441 kb)
10822_2016_9982_MOESM2_ESM.xlsx (183 kb)
Supplementary material 2 (XLSX 182 kb)
10822_2016_9982_MOESM3_ESM.xlsx (178 kb)
Supplementary material 3 (XLSX 177 kb)
10822_2016_9982_MOESM4_ESM.xlsx (186 kb)
Supplementary material 4 (XLSX 185 kb)

References

  1. 1.
    Prathipati P, Dixit A, Saxena AK (2007) Curr Comput Aided Mol Des 92:29Google Scholar
  2. 2.
    Prathipati P, Mizuguchi K (2016) Curr Top Med Chem 16(9):1009CrossRefGoogle Scholar
  3. 3.
    Walters WP, Stahl MT, Murcko MA (1998) Drug Discov Today 3(4):160CrossRefGoogle Scholar
  4. 4.
    Prathipati P, Mizuguchi K (2016) J Chem Inf Model 56(6):974Google Scholar
  5. 5.
    Prathipati P, Pandey G, Saxena AK (2005) J Chem Inf Model 45(1):136CrossRefGoogle Scholar
  6. 6.
    Prathipati P, Saxena AK (2005) J Comput Aided Mol Des 19(2):93CrossRefGoogle Scholar
  7. 7.
    Prathipati P, Saxena AK (2006) J Chem Inf Model 46(1):39CrossRefGoogle Scholar
  8. 8.
    Barillari C, Marcou G, Rognan D (2008) J Chem Inf Model 48(7):1396CrossRefGoogle Scholar
  9. 9.
    Radifar M, Yuniarti N, Istyastono EP (2013) Bioinformation 9(6):325CrossRefGoogle Scholar
  10. 10.
    Brewerton SC (2008) Curr Opin Drug Discov Dev 11(3):356Google Scholar
  11. 11.
    Da C, Kireev D (2014) J Chem Inf Model 54(9):2555CrossRefGoogle Scholar
  12. 12.
    Deng Z, Chuaqui C, Singh J (2004) J Med Chem 47(2):337CrossRefGoogle Scholar
  13. 13.
    Roy KK, Singh S, Saxena AK (2011) Mol Divers 15(2):477CrossRefGoogle Scholar
  14. 14.
    Saxena AK, Saxena S, Chaudhaery SS (2010) SAR QSAR Environ Res 21(1):1CrossRefGoogle Scholar
  15. 15.
    Saxena S, Chaudhaery SS, Varshney K, Saxena AK (2010) SAR QSAR Environ Res 21(5–6):445CrossRefGoogle Scholar
  16. 16.
    Verkhivker GM, Dixit A, Morra G, Colombo G (2009) Curr Top Med Chem 9(15):1369CrossRefGoogle Scholar
  17. 17.
    Crawford TD, Ndubaku CO, Chen H, Boggs JW, Bravo BJ, Delatorre K, Giannetti AM, Gould SE, Harris SF, Magnuson SR, McNamara E, Murray LJ, Nonomiya J, Sambrone A, Schmidt S, Smyczek T, Stanley M, Vitorino P, Wang L, West K, Wu P, Ye W (2014) J Med Chem 57(8):3484CrossRefGoogle Scholar
  18. 18.
    Wang L, Stanley M, Boggs JW, Crawford TD, Bravo BJ, Giannetti AM, Harris SF, Magnuson SR, Nonomiya J, Schmidt S, Wu P, Ye W, Gould SE, Murray LJ, Ndubaku CO, Chen H (2014) Bioorg Med Chem Lett 24(18):4546CrossRefGoogle Scholar
  19. 19.
    Langfelder P, Horvath S (2008) BMC Bioinf 9(1471–2105):559CrossRefGoogle Scholar
  20. 20.
    Prathipati P, Ma NL, Keller TH (2008) J Chem Inf Model 48(12):2362CrossRefGoogle Scholar
  21. 21.
    Rogers D, Hahn M (2010) J Chem Inf Model 50(5):742CrossRefGoogle Scholar
  22. 22.
    Tosco P, Balle T, Shiri F (2011) J Comput Aided Mol Des 25(8):777CrossRefGoogle Scholar
  23. 23.
    Koes DR, Baumgartner MP, Camacho CJ (2013) J Chem Inf Model 53(8):1893CrossRefGoogle Scholar
  24. 24.
    Friedman J, Hastie T, Tibshirani R (2010) J Stat Softw 33(1):1CrossRefGoogle Scholar
  25. 25.
    Hinselmann G, Rosenbaum L, Jahn A, Fechner N, Zell A (2011) J Cheminform 3(1):3CrossRefGoogle Scholar
  26. 26.
    Boughorbel S, Al-Ali R, Elkum N (2016) PLoS One 11(1):e0146413CrossRefGoogle Scholar
  27. 27.
    Korb O, Stutzle T, Exner TE (2009) J Chem Inf Model 49(1):84CrossRefGoogle Scholar
  28. 28.
    Smith RD, Dunbar JB Jr, Ung PM, Esposito EX, Yang CY, Wang S, Carlson HA (2011) J Chem Inf Model 51(9):2115CrossRefGoogle Scholar
  29. 29.
    Sunseri J, Ragoza M, Collins J, Koes DR (2016) J Comput Aided Mol Des. doi:10.1007/s10822-016-9960-x Google Scholar
  30. 30.
    Ye Z, Baumgartner MP, Wingert BM, Camacho CJ (2016) J Comput Aided Mol Des. doi:10.1007/s10822-016-9941-0
  31. 31.
    Damm-Ganamet KL, Smith RD, Dunbar JB Jr, Stuckey JA, Carlson HA (2013) J Chem Inf Model 53(8):1853CrossRefGoogle Scholar
  32. 32.
    Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK (2007) Nucleic Acids Res 35(Database issue):D198CrossRefGoogle Scholar
  33. 33.
    McCammon JA, Gelin BR, Karplus M (1977) Nature 267(5612):585CrossRefGoogle Scholar
  34. 34.
    Kontoyianni M, McClellan LM, Sokol GS (2004) J Med Chem 47(3):558CrossRefGoogle Scholar
  35. 35.
    Warren GL, Andrews CW, Capelli AM, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishoff CE, Head MS (2006) J Med Chem 49(20):5912CrossRefGoogle Scholar
  36. 36.
    Leach AR, Shoichet BK, Peishoff CE (2006) J Med Chem 49(20):5851CrossRefGoogle Scholar
  37. 37.
    Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) Genome Biol 4(5):P3CrossRefGoogle Scholar
  38. 38.
    Yan A, Grant GH, Richards WG (2008) J R Soc Interface 5(Suppl 3):S199CrossRefGoogle Scholar
  39. 39.
    Wright L, Barril X, Dymock B, Sheridan L, Surgenor A, Beswick M, Drysdale M, Collier A, Massey A, Davies N, Fink A, Fromont C, Aherne W, Boxall K, Sharp S, Workman P, Hubbard RE (2004) Chem Biol 11(6):775CrossRefGoogle Scholar
  40. 40.
    Roe SM, Prodromou C, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1999) J Med Chem 42(2):260CrossRefGoogle Scholar
  41. 41.
    Chen Y, Shoichet BK (2009) Nat Chem Biol 5(5):358CrossRefGoogle Scholar
  42. 42.
    Marcou G, Rognan D (2007) J Chem Inf Model 47(1):195CrossRefGoogle Scholar
  43. 43.
    Hubbard RE, Chen I, Davis B (2007) Curr Opin Drug Discov Devel 10(3):289Google Scholar
  44. 44.
    Klebe G (2006) Drug Discov Today 11(13–14):580CrossRefGoogle Scholar
  45. 45.
    Kumar A, Zhang KY (2016) J Comput Aided Mol Des. doi:10.1007/s10822-016-9931-2 Google Scholar
  46. 46.
    Dunbar JB Jr, Smith RD, Damm-Ganamet KL, Ahmed A, Esposito EX, Delproposto J, Chinnaswamy K, Kang YN, Kubish G, Gestwicki JE, Stuckey JA, Carlson HA (2013) J Chem Inf Model 53(8):1842CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.National Institutes of Biomedical Innovation, Health and NutritionIbaraki CityJapan

Personalised recommendations