Skip to main content

Computer-aided drug design at Boehringer Ingelheim

Abstract

Computer-Aided Drug Design (CADD) is an integral part of the drug discovery endeavor at Boehringer Ingelheim (BI). CADD contributes to the evaluation of new therapeutic concepts, identifies small molecule starting points for drug discovery, and develops strategies for optimizing hit and lead compounds. The CADD scientists at BI benefit from the global use and development of both software platforms and computational services. A number of computational techniques developed in-house have significantly changed the way early drug discovery is carried out at BI. In particular, virtual screening in vast chemical spaces, which can be accessed by combinatorial chemistry, has added a new option for the identification of hits in many projects. Recently, a new framework has been implemented allowing fast, interactive predictions of relevant on and off target endpoints and other optimization parameters. In addition to the introduction of this new framework at BI, CADD has been focusing on the enablement of medicinal chemists to independently perform an increasing amount of molecular modeling and design work. This is made possible through the deployment of MOE as a global modeling platform, allowing computational and medicinal chemists to freely share ideas and modeling results. Furthermore, a central communication layer called the computational chemistry framework provides broad access to predictive models and other computational services.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Schiele F, van Ryn J, Litzenburger T, Ritter M, Seeliger D, Nar H (2015) Structure-guided residence time optimization of a dabigatran reversal agent. MAbs 7:871–880

    CAS  Article  Google Scholar 

  2. 2.

    Seeliger D, Schulz P, Litzenburger T, Spitz J, Hoerer S, Blech M, Enenkel B, Studts JM, Garidel P, Karow AR (2015) Boosting antibody developability through rational sequence optimization. MAbs 7:505–515

    CAS  Article  Google Scholar 

  3. 3.

    Beck B, Seeliger D, Kriegl JM (2015) The impact of data integrity on decision making in early lead discovery. J Comput Aided Mol Des 29:911–921

    CAS  Article  Google Scholar 

  4. 4.

    Biovia pipeline pilot: http://accelrys.com/products/collaborative-science/biovia-pipeline-pilot/. Accessed 23 Feb 2016

  5. 5.

    Knime: https://www.knime.org/. Accessed 23 Feb 2016

  6. 6.

    Beck B (2012) BioProfile—Extract knowledge from corporate databases to assess cross-reactivities of compounds. Bioorganic Med Chem 20:5428–5435

    CAS  Article  Google Scholar 

  7. 7.

    Loughney D, Claus BL, Johnson SR (2011) To measure is to know: an approach to CADD performance metrics. Drug Discov Today 16:548–554

    Article  Google Scholar 

  8. 8.

    Baldwin ET (2012) Metrics and the effective computational scientist: process, quality and communication. Drug Discov Today 17:935–941

    Article  Google Scholar 

  9. 9.

    Kuhn B, Guba W, Hert J, Banner D, Bissantz C, Ceccarelli S, Haap W, Korner M, Kuglstatter A, Lerner C, Mattei P, Neidhart W, Pinard E, Rudolph MG, Schulz-Gasch T, Woltering T, Stahl M (2016) A real-world perspective on molecular design. J Med Chem 59:4087–4102

    CAS  Article  Google Scholar 

  10. 10.

    Christ CD, Fox T (2014) Accuracy assessment and automation of free energy calculations for drug design. J Chem Inf Model 54:108–120

    CAS  Article  Google Scholar 

  11. 11.

    Hucke O, Coulombe R, Bonneau P, Bertrand-Laperle M, Brochu C, Gillard J, Joly MA, Landry S, Lepage O, Llinas-Brunet M, Pesant M, Poirier M, Poirier M, McKercher G, Marquis M, Kukolj G, Beaulieu PL, Stammers TA (2014) Molecular dynamics simulations and structure-based rational design lead to allosteric HCV NS5B polymerase thumb pocket 2 inhibitor with picomolar cellular replicon potency. J Med Chem 57:1932–1943

    CAS  Article  Google Scholar 

  12. 12.

    Wassermann AM, Haebel P, Weskamp N, Bajorath J (2012) SAR matrices: automated extraction of information-rich SAR tables from large compound data sets. J Chem Inf Model 52:1769–1776

    CAS  Article  Google Scholar 

  13. 13.

    Demir-Kavuk O, Bentzien J, Muegge I, Knapp EW (2011) DemQSAR: predicting human volume of distribution and clearance of drugs. J Comput Aided Mol Des 25:1121–1133

    CAS  Article  Google Scholar 

  14. 14.

    Kramer C, Beck B, Kriegl JM, Clark T (2008) A composite model for HERG blockade. Chem Med Chem 3:254–265

    CAS  Article  Google Scholar 

  15. 15.

    Nocker M, Handschuh S, Tautermann C, Liedl KR (2009) Theoretical prediction of hydrogen bond strength for use in molecular modeling. J Chem Inf Model 49:2067–2076

    CAS  Article  Google Scholar 

  16. 16.

    Huber RG, Margreiter MA, Fuchs JE, Von GS, Tautermann CS, Liedl KR, Fox T (2014) Heteroaromatic pi-stacking energy landscapes. J Chem Inf Model 54:1371–1379

    CAS  Article  Google Scholar 

  17. 17.

    Kneissl B, Leonhardt B, Hildebrandt A, Tautermann CS (2009) Revisiting automated G-protein coupled receptor modeling: the benefit of additional template structures for a neurokinin-1 receptor model. J Med Chem 52:3166–3173

    CAS  Article  Google Scholar 

  18. 18.

    Li H, Kasam V, Tautermann CS, Seeliger D, Vaidehi N (2014) Computational method to identify druggable binding sites that target protein-protein interactions. J Chem Inf Model 54:1391–1400

    CAS  Article  Google Scholar 

  19. 19.

    Hao MH, Haq O, Muegge I (2007) Torsion angle preference and energetics of small-molecule ligands bound to proteins. J Chem Inf Model 47:2242–2252

    CAS  Article  Google Scholar 

  20. 20.

    Phipps MJ, Fox T, Tautermann CS, Skylaris CK (2016) Energy decomposition analysis based on absolutely localized molecular orbitals for large-scale density functional theory calculations in drug design. J Chem Theory Comput 12:3135–3148

    CAS  Article  Google Scholar 

  21. 21.

    Python version 2.7 available at http://www.python.org. Accessed 23 Feb 2016

  22. 22.

    RDKit: http://www.rdkit.org. Accessed 23 Feb 2016

  23. 23.

    Muegge I, Zhang Q (2015) 3D virtual screening of large combinatorial spaces. Methods 71:14–20

    CAS  Article  Google Scholar 

  24. 24.

    Teodoro M, Muegge I (2011) BIBuilder: exhaustive Searching for De Novo Ligands. Mol Inform 30:63–75

    CAS  Article  Google Scholar 

  25. 25.

    Bentzien J, Muegge I, Hamner B, Thompson DC (2013) Crowd computing: using competitive dynamics to develop and refine highly predictive models. Drug Discov Today 18:472–478

    CAS  Article  Google Scholar 

  26. 26.

    Bentzien J, Bharadwaj R, Thompson DC (2015) Crowdsourcing in pharma: a strategic framework. Drug Discov Today 20:874–883

    Article  Google Scholar 

  27. 27.

    Molecular Operating Environment (MOE) (2015) 2014.09; Chemical Computing Group Inc., 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7

  28. 28.

    Bentzien J, Hickey ER, Kemper RA, Brewer ML, Dyekjaer JD, East SP, Whittaker M (2010) An in silico method for predicting Ames activities of primary aromatic amines by calculating the stabilities of nitrenium ions. J Chem Inf Model 50:274–297

    CAS  Article  Google Scholar 

  29. 29.

    Bentzien J, Muegge I (2014) In silico predictions of genotoxicity for aromatic amines. Front Biosci (Landmark Ed) 19:649–661

    Article  Google Scholar 

  30. 30.

    Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748

    CAS  Article  Google Scholar 

  31. 31.

    Sadowski J, Gasteiger J, Klebe G (1994) Comparison of automatic three-dimensional model builders using 639 X-ray structures. J Chem Inf Comput Sci 34:1000–1008

    CAS  Article  Google Scholar 

  32. 32.

    Kriegl JM, Arnhold T, Beck B, Fox T (2005) A support vector machine approach to classify human cytochrome P450 3A4 inhibitors. J Comput Aided Mol Des 19:189–201

    CAS  Article  Google Scholar 

  33. 33.

    Muegge I, Bentzien J, Mukherjee P, Hughes RO (2016) Automatically updating predictive modeling workflows support decision making in drug design. Future Med Chem 8:1779–1796

    CAS  Article  Google Scholar 

  34. 34.

    Page KM (2016) Validation of early human dose prediction: a key metric for compound progression in Drug Discovery. Mol Pharm 13:609–620

    CAS  Article  Google Scholar 

  35. 35.

    Marvin 6.0.2, 2014, ChemAxon (http://www.chemaxon.com)

  36. 36.

    Hillisch A, Heinrich N, Wild H (2015) Computational chemistry in the pharmaceutical industry: from childhood to adolescence. ChemMedChem 10:1958–1962

    CAS  Article  Google Scholar 

  37. 37.

    Bieler M, Reutlinger M, Rodrigues T, Schneider P, Kriegl JM, Schneider G (2016) Designing multi-target compound libraries with Gaussian process models. Mol Inform 35:192–198

    CAS  Article  Google Scholar 

  38. 38.

    Obach RS, Lombardo F, Waters NJ (2008) Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds. Drug Metab Dispos 36:1385–1405

    CAS  Article  Google Scholar 

  39. 39.

    Ploemen JP, Kelder J, Hafmans T, van de Sandt H, van Burgsteden JA, Saleminki PJ, Van EE (2004) Use of physicochemical calculation of pKa and CLogP to predict phospholipidosis-inducing potential: a case study with structurally related piperazines. Exp Toxicol Pathol 55:347–355

    CAS  Google Scholar 

  40. 40.

    Przybylak KR, Alzahrani AR, Cronin MT (2014) How does the quality of phospholipidosis data influence the predictivity of structural alerts? J Chem Inf Model 54:2224–2232

    CAS  Article  Google Scholar 

  41. 41.

    Molecular Discovery Ltd. Moka version 1.1. http://www.moldiscovery.com/software/moka/ Accessed 23 Feb 2016)

  42. 42.

    Hussain J, Rea C (2010) Computationally efficient algorithm to identify matched molecular pairs (MMPs) in large data sets. J Chem Inf Model 50:339–348

    CAS  Article  Google Scholar 

  43. 43.

    Griffen E, Leach AG, Robb GR, Warner DJ (2011) Matched molecular pairs as a medicinal chemistry tool. J Med Chem 54:7739–7750

    CAS  Article  Google Scholar 

  44. 44.

    Geppert T, Beck B (2014) Fuzzy matched pairs: a means to determine the pharmacophore impact on molecular interaction. J Chem Inf Model 54:1093–1102

    CAS  Article  Google Scholar 

  45. 45.

    Fuchs JE, Wellenzohn B, Weskamp N, Liedl KR (2015) Matched peptides: tuning matched molecular pair analysis for biopharmaceutical applications. J Chem Inf Model 55:2315–2323

    CAS  Article  Google Scholar 

  46. 46.

    Tibco Spotfire. version 6.3. http://spotfire.tibco.com/ Accessed 4 July 2016

  47. 47.

    Certara. D360: The Pharmaceutical Industry’s Data Analytics and Scientific Informatics Platform. http://www.certara.com/software/scientific-informatics/d360 Accessed 24 Feb 2016

  48. 48.

    Bergner A, Parel SP (2013) Hit expansion approaches using multiple similarity methods and virtualized query structures. J Chem Inf Model 53:1057–1066

    CAS  Article  Google Scholar 

  49. 49.

    Muegge I, Oloff S (2006) Advances in virtual screening. Drug Discov Today Technol 3:405–411

    Article  Google Scholar 

  50. 50.

    Muegge I (2008) Synergies of virtual screening approaches. Mini Rev Med Chem 8:927–933

    CAS  Article  Google Scholar 

  51. 51.

    Muegge I, Oloff S (2010) Virtual screening. In: Abraham DJ, Rotella DP (eds) Burger’s medicinal chemistry drug discovery and development, vol 2, 7th edn. Wiley, Hoboken, pp 1–46

    Google Scholar 

  52. 52.

    Muegge I, Mukherjee P (2016) An overview of molecular fingerprint similarity search in virtual screening. Expert Opin Drug Discov 11:137–148

    CAS  Article  Google Scholar 

  53. 53.

    Lessel U, Wellenzohn B, Lilienthal M, Claussen H (2009) Searching fragment spaces with feature trees. J Chem Inf Model 49:270–279

    CAS  Article  Google Scholar 

  54. 54.

    Rarey M, Dixon JS (1998) Feature trees: a new molecular similarity measure based on tree matching. J Comput Aided Mol Des 12:471–490

    CAS  Article  Google Scholar 

  55. 55.

    Grant JA, Nicholls A, Stahl MT. ROCS OpenEye, 3600 Cerrillos Rd., Suite 1107, Santa Fe, NM 87507

  56. 56.

    Wellenzohn B, Lessel U, Beller A, Isambert T, Hoenke C, Nosse B (2012) Identification of new potent GPR119 agonists by combining virtual screening and combinatorial chemistry. J Med Chem 55:11031–11041

    CAS  Article  Google Scholar 

  57. 57.

    Lessel U, Wellenzohn B, Fischer JR, Rarey M (2012) Design of combinatorial libraries for the exploration of virtual hits from fragment space searches with LoFT. J Chem Inf Model 52:373–379

    CAS  Article  Google Scholar 

  58. 58.

    Muegge I, Collin D, Cook B, Hill-Drzewi M, Horan J, Kugler S, Labadia M, Li X, Smith L, Zhang Y (2015) Discovery of 1,3-dihydro-2,1,3-benzothiadiazole 2,2-dioxide analogs as new RORC modulators. Bioorg Med Chem Lett 25:1892–1895

    CAS  Article  Google Scholar 

  59. 59.

    Hickey ER, Zindell R, Cirillo PF, Wu L, Ermann M, Berry AK, Thomson DS, Albrecht C, Gemkow MJ, Riether D (2015) Selective CB2 receptor agonists. Part 1: the identification of novel ligands through computer-aided drug design (CADD) approaches. Bioorg Med Chem Lett 25:575–580

    CAS  Article  Google Scholar 

  60. 60.

    Bento AP, Gaulton A, Hersey A, Bellis LJ, Chambers J, Davies M, Kruger FA, Light Y, Mak L, McGlinchey S, Nowotka M, Papadatos G, Santos R, Overington JP (2014) The ChEMBL bioactivity database: an update. Nucleic Acids Res 42:D1083–D1090

    CAS  Article  Google Scholar 

  61. 61.

    Williams AJ, Harland L, Groth P, Pettifer S, Chichester C, Willighagen EL, Evelo CT, Blomberg N, Ecker G, Goble C, Mons B (2012) Open PHACTS: semantic interoperability for drug discovery. Drug Discov Today 17:1188–1198

    Article  Google Scholar 

  62. 62.

    Briggs KA (2016) Is preclinical data sharing the new norm? Drug Discov Today (in press)

Download references

Acknowledgments

We would especially like to thank our Computational Chemistry and CADD teams in Biberach, Ridgefield and Vienna for their dedicated contribution, without whom this work would not have been possible. The support from our colleagues in IT, in particular for the implementation of the CCFW, is gratefully acknowledged. We thank Ulrike Küfner-Mühl, Darryl McConnell, Dirk Kessler, and Robert Hughes for fruitful discussions and for their continued support. We also thank Karen J. Bergner for critically reading the manuscript.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Ingo Muegge, Andreas Bergner or Jan M. Kriegl.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Muegge, I., Bergner, A. & Kriegl, J.M. Computer-aided drug design at Boehringer Ingelheim. J Comput Aided Mol Des 31, 275–285 (2017). https://doi.org/10.1007/s10822-016-9975-3

Download citation

Keywords

  • Computational chemistry
  • Molecular modeling
  • Predictive modeling
  • Chemoinformatics
  • Virtual screening