Journal of Computer-Aided Molecular Design

, Volume 31, Issue 1, pp 71–85 | Cite as

Absolute binding free energy calculations of CBClip host–guest systems in the SAMPL5 blind challenge

  • Juyong Lee
  • Florentina Tofoleanu
  • Frank C. PickardIV
  • Gerhard König
  • Jing Huang
  • Ana Damjanović
  • Minkyung Baek
  • Chaok Seok
  • Bernard R. Brooks


Herein, we report the absolute binding free energy calculations of CBClip complexes in the SAMPL5 blind challenge. Initial conformations of CBClip complexes were obtained using docking and molecular dynamics simulations. Free energy calculations were performed using thermodynamic integration (TI) with soft-core potentials and Bennett’s acceptance ratio (BAR) method based on a serial insertion scheme. We compared the results obtained with TI simulations with soft-core potentials and Hamiltonian replica exchange simulations with the serial insertion method combined with the BAR method. The results show that the difference between the two methods can be mainly attributed to the van der Waals free energies, suggesting that either the simulations used for TI or the simulations used for BAR, or both are not fully converged and the two sets of simulations may have sampled difference phase space regions. The penalty scores of force field parameters of the 10 guest molecules provided by CHARMM Generalized Force Field can be an indicator of the accuracy of binding free energy calculations. Among our submissions, the combination of docking and TI performed best, which yielded the root mean square deviation of 2.94 kcal/mol and an average unsigned error of 3.41 kcal/mol for the ten guest molecules. These values were best overall among all participants. However, our submissions had little correlation with experiments.


Absolute binding free energy calculation Hamiltonian replica exchange Thermodynamic integration Bennett’s acceptance ratio Double decoupling scheme Host-guest complexes Constant-pH simulation 



The authors would like to thank R. Pastor for stimulating discussions. The research was supported by the Intramural Research Program of the NIH, NHLBI. Computational resources and services used in this work were provided by the LoBoS cluster of the National Institutes of Health.


  1. 1.
    Liao C, Sitzmann M, Pugliese A, Nicklaus MC (2011) Software and resources for computational medicinal chemistry. Future Med Chem 3:1057–1085CrossRefGoogle Scholar
  2. 2.
    Homeyer N, Stoll F, Hillisch A, Gohlke H (2014) Binding free energy calculations for lead optimization: assessment of their accuracy in an industrial drug design context. J Chem Theory Comput 10:3331–3344CrossRefGoogle Scholar
  3. 3.
    Sliwoski G, Kothiwale S, Meiler J, Lowe EW (2014) Computational methods in drug discovery. Pharmacol Rev 66:334–395CrossRefGoogle Scholar
  4. 4.
    Shirts MR, Mobley DL, Brown SP (2010) Free-energy calculations in structure-based drug design. Drug Des Struct Ligand Based Approaches. doi: 10.1017/CBO9780511730412.007 Google Scholar
  5. 5.
    Kollman P (1993) Free energy calculations: applications to chemical and biochemical phenomena. Chem Rev 93:2395–2417CrossRefGoogle Scholar
  6. 6.
    Chipot C, Pohorille A (2007) Free energy calculations. Springer, BerlinCrossRefGoogle Scholar
  7. 7.
    Wang L et al (2015) Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. J Am Chem Soc. doi: 10.1021/ja512751q Google Scholar
  8. 8.
    Barrow SJ, Kasera S, Rowland MJ, Del Barrio J, Scherman OA (2015) Cucurbituril-based molecular recognition. Chem Rev 115:12320–12406CrossRefGoogle Scholar
  9. 9.
    Muddana HS, Fenley AT, Mobley DL, Gilson MK (2014) The SAMPL4 host–guest blind prediction challenge: an overview. J Comput Aided Mol Des 28:305–317CrossRefGoogle Scholar
  10. 10.
    Gallicchio E, Levy RM (2012) Prediction of SAMPL3 host–guest affinities with the binding energy distribution analysis method (BEDAM). J Comput Aided Mol Des 26:505–516CrossRefGoogle Scholar
  11. 11.
    König G, Brooks BR (2012) Predicting binding affinities of host–guest systems in the SAMPL3 blind challenge: the performance of relative free energy calculations. J Comput Aided Mol Des 26:543–550CrossRefGoogle Scholar
  12. 12.
    Muddana HS et al (2012) Blind prediction of host–guest binding affinities: a new SAMPL3 challenge. J Comput Aided Mol Des 26:475–487CrossRefGoogle Scholar
  13. 13.
    Muddana HS, Gilson MK (2012) Prediction of SAMPL3 host–guest binding affinities: evaluating the accuracy of generalized force-fields. J Comput Aided Mol Des 26:517–525CrossRefGoogle Scholar
  14. 14.
    Geballe MT, Guthrie JP (2012) The SAMPL3 blind prediction challenge: transfer energy overview. J Comput Aided Mol Des 26:489–496CrossRefGoogle Scholar
  15. 15.
    Reinisch J, Klamt A, Diedenhofen M (2012) Prediction of free energies of hydration with COSMO-RS on the SAMPL3 data set. J Comput Aided Mol Des 26:669–673CrossRefGoogle Scholar
  16. 16.
    Kulp JL III, Blumenthal SN, Wang Q, Bryan RL, Guarnieri F (2012) A fragment-based approach to the SAMPL3 Challenge. J Comput Aided Mol Des 26:583–594CrossRefGoogle Scholar
  17. 17.
    Kumar A, Zhang KYJ (2012) Computational fragment-based screening using RosettaLigand: the SAMPL3 challenge. J Comput Aided Mol Des 26:603–616CrossRefGoogle Scholar
  18. 18.
    König G, Pickard FC, Mei Y, Brooks BR (2014) Predicting hydration free energies with a hybrid QM/MM approach: an evaluation of implicit and explicit solvation models in SAMPL4. J Comput Aided Mol Des 28:245–257CrossRefGoogle Scholar
  19. 19.
    Hsiao Y-W, Söderhjelm P (2014) Prediction of SAMPL4 host–guest binding affinities using funnel metadynamics. J Comput Aided Mol Des 28:443–454CrossRefGoogle Scholar
  20. 20.
    Monroe JI, Shirts MR (2014) Converging free energies of binding in cucurbit [7] uril and octa-acid host–guest systems from SAMPL4 using expanded ensemble simulations. J Comput Aided Mol Des 28:401–415CrossRefGoogle Scholar
  21. 21.
    Muddana HS, Yin J, Sapra NV, Fenley AT, Gilson MK (2014) Blind prediction of SAMPL4 cucurbit [7] uril binding affinities with the mining minima method. J Comput Aided Mol Des 28:463–474CrossRefGoogle Scholar
  22. 22.
    Ellingson BA et al (2014) Efficient calculation of SAMPL4 hydration free energies using OMEGA, SZYBKI, QUACPAC, and Zap TK. J Comput Aided Mol Des 28:289–298CrossRefGoogle Scholar
  23. 23.
    Manzoni F, Söderhjelm P (2014) Prediction of hydration free energies for the SAMPL4 data set with the AMOEBA polarizable force field. J Comput Aided Mol Des 28:235–244CrossRefGoogle Scholar
  24. 24.
    Fu J, Liu Y, Wu J (2014) Fast prediction of hydration free energies for SAMPL4 blind test from a classical density functional theory. J Comput Aided Mol Des 28:299–304CrossRefGoogle Scholar
  25. 25.
    Li L, Dill KA, Fennell CJ (2014) Testing the semi-explicit assembly model of aqueous solvation in the SAMPL4 challenge. J Comput Aided Mol Des 28:259–264CrossRefGoogle Scholar
  26. 26.
    Gallicchio E et al (2015) BEDAM binding free energy predictions for the SAMPL4 octa-acid host challenge. J Comput Aided Mol Des 29:315–325CrossRefGoogle Scholar
  27. 27.
    Beckstein O, Fourrier A, Iorga BI (2014) Prediction of hydration free energies for the SAMPL4 diverse set of compounds using molecular dynamics simulations with the OPLS-AA force field. J Comput Aided Mol Des 28:265–276CrossRefGoogle Scholar
  28. 28.
    Park H (2014) Extended solvent-contact model approach to SAMPL4 blind prediction challenge for hydration free energies. J Comput Aided Mol Des 28:175–186CrossRefGoogle Scholar
  29. 29.
    Mikulskis P et al (2014) Free-energy perturbation and quantum mechanical study of SAMPL4 octa-acid host–guest binding energies. J Comput Aided Mol Des 28:375–400CrossRefGoogle Scholar
  30. 30.
    Sure R, Antony J, Grimme S (2014) Blind prediction of binding affinities for charged supramolecular host–guest systems: achievements and shortcomings of DFT-D3. J Phys Chem B 118:3431–3440CrossRefGoogle Scholar
  31. 31.
    Mobley DL, Wymer KL, Lim NM, Guthrie JP (2014) Blind prediction of solvation free energies from the SAMPL4 challenge. J Comput Aided Mol Des 28:135–150CrossRefGoogle Scholar
  32. 32.
    Gallicchio E et al (2014) Virtual screening of integrase inhibitors by large scale binding free energy calculations: the SAMPL4 challenge. J Comput Aided Mol Des 28:475–490CrossRefGoogle Scholar
  33. 33.
    Mobley DL et al (2014) Blind prediction of HIV integrase binding from the SAMPL4 challenge. J Comput Aided Mol Des 28:327–345CrossRefGoogle Scholar
  34. 34.
    Perryman AL, Santiago DN, Forli S, Santos-Martins D, Olson AJ (2014) Virtual screening with AutoDock Vina and the common pharmacophore engine of a low diversity library of fragments and hits against the three allosteric sites of HIV integrase: participation in the SAMPL4 protein–ligand binding challenge. J Comput Aided Mol Des 28:429–441CrossRefGoogle Scholar
  35. 35.
    Hogues H, Sulea T, Purisima EO (2014) Exhaustive docking and solvated interaction energy scoring: lessons learned from the SAMPL4 challenge. J Comput Aided Mol Des 28:417–427CrossRefGoogle Scholar
  36. 36.
    Sandberg L (2014) Predicting hydration free energies with chemical accuracy: the SAMPL4 challenge. J Comput Aided Mol Des 28:211–219CrossRefGoogle Scholar
  37. 37.
    Ma D, Zavalij PY, Isaacs L (2010) Acyclic cucurbit[n]uril congeners are high affinity hosts. J Org Chem 75:4786–4795CrossRefGoogle Scholar
  38. 38.
    Biedermann F et al (2010) Benzobis(imidazolium)-cucurbit[8]uril complexes for binding and sensing aromatic compounds in aqueous solution. Chem A Eur J 16:13716–13722CrossRefGoogle Scholar
  39. 39.
    Naïm M et al (2007) Solvated interaction energy (SIE) for scoring protein–ligand binding affinities. 1. Exploring the parameter space. J Chem Inf Model 47:122–133CrossRefGoogle Scholar
  40. 40.
    Zhang B, Isaacs L (2014) Acyclic cucurbit[n]uril-type molecular containers: influence of aromatic walls on their function as solubilizing excipients for insoluble drugs. J Med Chem 57:9554–9563CrossRefGoogle Scholar
  41. 41.
    Gilberg L, Zhang B, Zavalij PY, Sindelar V, Isaacs L (2015) Acyclic cucurbit[n]uril-type molecular containers: influence of glycoluril oligomer length on their function as solubilizing agents. Org Biomol Chem 13:4041–4050CrossRefGoogle Scholar
  42. 42.
    Lee JW, Samal S, Selvapalam N, Kim H-J, Kim K (2003) Cucurbituril homologues and\n derivatives: new opportunities\nin supramolecular chemistry. Acc Chem Res 36:621–630CrossRefGoogle Scholar
  43. 43.
    Masson E, Ling X, Joseph R, Kyeremeh-Mensah L, Lu X (2012) Cucurbituril chemistry: a tale of supramolecular success. RSC Adv 2(4):1213–1247CrossRefGoogle Scholar
  44. 44.
    Lee J, Scheraga HA, Rackovsky S (1997) New optimization method for conformational energy calculations on polypeptides: conformational space annealing. J Comput Chem 18:1222–1232CrossRefGoogle Scholar
  45. 45.
    Shin W-H et al (2011) LigDockCSA: protein–ligand docking using conformational space annealing. J Comput Chem 32:3226–3232CrossRefGoogle Scholar
  46. 46.
    Lee J et al (2011) De novo protein structure prediction by dynamic fragment assembly and conformational space annealing. Proteins Struct Funct Bioinform 79:2403–2417CrossRefGoogle Scholar
  47. 47.
    Lee J, Gross SP, Lee J (2012) Modularity optimization by conformational space annealing. Phys Rev E 85:056702CrossRefGoogle Scholar
  48. 48.
    Shin WH, Kim JK, Kim DS, Seok C (2013) GalaxyDock2: protein–ligand docking using beta-complex and global optimization. J Comput Chem 34:2647–2656CrossRefGoogle Scholar
  49. 49.
    Shin W-H, Lee GR, Seok C (2015) Evaluation of GalaxyDock based on the community structure—activity resource 2013 and 2014 benchmark studies. J Chem Inf Model. doi: 10.1021/acs.jcim.5b00309 Google Scholar
  50. 50.
    Gilson MK, Given JA, Bush BL, McCammon JA (1997) The statistical-thermodynamic basis for computation of binding affinities: a critical review. Biophys J 72:1047–1069CrossRefGoogle Scholar
  51. 51.
    Boresch S et al (2003) Absolute binding free energies: a quantitative approach for their calculation. J Phys Chem B 107(35):9535–9551CrossRefGoogle Scholar
  52. 52.
    Fukunishi H, Watanabe O, Takada S (2002) On the Hamiltonian replica exchange method for efficient sampling of biomolecular systems: application to protein structure prediction. J Chem Phys 116:9058CrossRefGoogle Scholar
  53. 53.
    Itoh SG, Okumura H (2013) Hamiltonian replica-permutation method and its applications to an alanine dipeptide and amyloid-β(29–42) peptides. J Comput Chem 34:2493–2497CrossRefGoogle Scholar
  54. 54.
    Itoh SSG, Okumura H, Okamoto Y (2010) Replica-exchange method in van der Waals radius space: overcoming steric restrictions for biomolecules. J Chem Phys 132:134105CrossRefGoogle Scholar
  55. 55.
    Bennett CH (1976) Efficient estimation of free energy differences from Monte Carlo data. J Comput Phys 22:245–268CrossRefGoogle Scholar
  56. 56.
    König G, Hudson PS, Boresch S, Woodcock HL (2014) Multiscale free energy simulations: an efficient method for connecting classical MD simulations to QM or QM/MM free energies using Non-Boltzmann Bennett reweighting schemes. J Chem Theory Comput 10:1406–1419CrossRefGoogle Scholar
  57. 57.
    Straatsma TP, Berendsen HJ, Postma JPM, Berendsen C, Postma PM (1986) Free energy of hydrophobic hydration: a molecular dynamics study of noble gases in water. J Chem Phys 85:6720–6727CrossRefGoogle Scholar
  58. 58.
    Straatsma TP, Berendsen HJC (1988) Free energy of ionic hydration: analysis of a thermodynamic integration technique to evaluate free energy differences by molecular dynamics simulations. J Chem Phys 89:5876CrossRefGoogle Scholar
  59. 59.
    Lee J, Miller BT, Brooks BR (2016) Computational scheme for pH-dependent binding free energy calculation with explicit solvent. Protein Sci 25:231–243CrossRefGoogle Scholar
  60. 60.
    Karpen ME, Tobias DJ, Brooks CL (1993) Statistical clustering techniques for the analysis of long molecular dynamics trajectories: analysis of 2.2-ns trajectories of YPGDV. Biochemistry 32:412–420CrossRefGoogle Scholar
  61. 61.
    Huey R, Morris GM, Olson AJ, Goodsell DS (2007) A semiempirical free energy force field with charge-based desolvation. J Comput Chem 28:1145–1152CrossRefGoogle Scholar
  62. 62.
    Lee J, Lee I-H, Lee J (2003) Unbiased global optimization of Lennard-Jones clusters for N < or =201 using the conformational space annealing method. Phys Rev Lett 91:080201CrossRefGoogle Scholar
  63. 63.
    Wang Q, Pang YP (2007) Accurate reproduction of 161 small-molecule complex crystal structures using the EUDOC program: expanding the use of EUDOC to supramolecular chemistry. PLoS One 2(6):e531CrossRefGoogle Scholar
  64. 64.
    Brooks BR et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614CrossRefGoogle Scholar
  65. 65.
    Vanommeslaeghe K et al (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31:671–690Google Scholar
  66. 66.
    Yu W, He X, Vanommeslaeghe K, MacKerell AD (2012) Extension of the CHARMM general force field to sulfonyl-containing compounds and its utility in biomolecular simulations. J Comput Chem 33:2451–2468CrossRefGoogle Scholar
  67. 67.
    Vanommeslaeghe K, MacKerell AD (2012) Automation of the CHARMM general force field (CGenFF) I: bond perception and atom typing. J Chem Inf Model 52:3144–3154CrossRefGoogle Scholar
  68. 68.
    Vanommeslaeghe K, Raman EP, MacKerell AD (2012) Automation of the CHARMM general force field (CGenFF) II: assignment of bonded parameters and partial atomic charges. J Chem Inf Model 52:3155–3168CrossRefGoogle Scholar
  69. 69.
    Boresch S, Bruckner S (2011) Avoiding the van der Waals endpoint problem using serial atomic insertion. J Comput Chem 32:2449–2458CrossRefGoogle Scholar
  70. 70.
    Nose S, Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511CrossRefGoogle Scholar
  71. 71.
    Hoover W (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697CrossRefGoogle Scholar
  72. 72.
    Martyna GJ, Klein ML (1992) Nose–Hoover chains: the canonical ensemble via continuous dynamics. J Chem Phys 97(4):2635CrossRefGoogle Scholar
  73. 73.
    Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N log(N) method for Ewald sums in large systems. J Chem Phys 98:10089CrossRefGoogle Scholar
  74. 74.
    Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341CrossRefGoogle Scholar
  75. 75.
    Lee J, Miller BT, Damjanović A, Brooks BR (2014) Constant pH molecular dynamics in explicit solvent with enveloping distribution sampling and hamiltonian exchange. J Chem Theory Comput 10:2738–2750CrossRefGoogle Scholar
  76. 76.
    Lee J, Miller BT, Damjanovic A, Brooks BR (2015) Enhancing constant-pH simulation in explicit solvent with a two-dimensional replica exchange method. J Chem Theory Comput 11:2560–2574CrossRefGoogle Scholar
  77. 77.
    De Ruiter A, Boresch S, Oostenbrink C (2013) Comparison of thermodynamic integration and Bennett’s acceptance ratio for calculating relative protein–Ligand binding free energies. J Comput Chem 34:1024–1034CrossRefGoogle Scholar
  78. 78.
    Bruckner S, Boresch S (2011) Efficiency of Alchemical free energy simulations. II. improvements for thermodynamic integration. J Comput Chem 32:1320–1333CrossRefGoogle Scholar
  79. 79.
    Brun V (1953) A generalization of the formula of Simpson for non-equidistant ordinates. Nord Mat Tidskr 1:10–15Google Scholar
  80. 80.
    König G, Bruckner S, Boresch S (2009) Unorthodox uses of Bennett’s acceptance ratio method. J Comput Chem 30:1712–1718CrossRefGoogle Scholar
  81. 81.
    König G, Boresch S (2011) Non-Boltzmann sampling and Bennett’s acceptance ratio method: how to profit from bending the rules. J Comput Chem 32:1082–1090CrossRefGoogle Scholar
  82. 82.
    König G, Miller BT, Boresch S, Wu X, Brooks BR (2012) Enhanced sampling in free energy calculations: combining SGLD with the Bennett’s acceptance ratio and enveloping distribution sampling methods. J Chem Theory Comput 8:3650–3662CrossRefGoogle Scholar
  83. 83.
    Mooney CZ, Duval RD, Duval R (1993) Bootstrapping: a nonparametric approach to statistical inference. Sage, NYCrossRefGoogle Scholar
  84. 84.
    Zheng Z, Ucisik MN, Merz KM (2013) The movable type method applied to protein–ligand binding. J Chem Theory Comput 9:5526–5538CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland (outside the USA) 2016

Authors and Affiliations

  1. 1.Laboratory of Computational Biology, National Heart, Lung and Blood InstituteNational Institutes of HealthBethesdaUSA
  2. 2.Department of Pharmaceutical Science, School of PharmacyUniversity of MarylandBaltimoreUSA
  3. 3.Department of ChemistrySeoul National UniversitySeoulRepublic of Korea

Personalised recommendations