Journal of Computer-Aided Molecular Design

, Volume 31, Issue 1, pp 107–118 | Cite as

Absolute binding free energies for octa-acids and guests in SAMPL5

Evaluating binding free energies for octa-acid and guest complexes in the SAMPL5 blind challenge
  • Florentina Tofoleanu
  • Juyong Lee
  • Frank C. Pickard IV
  • Gerhard König
  • Jing Huang
  • Minkyung Baek
  • Chaok Seok
  • Bernard R. Brooks
Article

Abstract

As part of the SAMPL5 blind prediction challenge, we calculate the absolute binding free energies of six guest molecules to an octa-acid (OAH) and to a methylated octa-acid (OAMe). We use the double decoupling method via thermodynamic integration (TI) or Hamiltonian replica exchange in connection with the Bennett acceptance ratio (HREM-BAR). We produce the binding poses either through manual docking or by using GalaxyDock-HG, a docking software developed specifically for this study. The root mean square deviations for our most accurate predictions are 1.4 kcal mol−1 for OAH with TI and 1.9 kcal mol−1 for OAMe with HREM-BAR. Our best results for OAMe were obtained for systems with ionic concentrations corresponding to the ionic strength of the experimental solution. The most problematic system contains a halogenated guest. Our attempt to model the σ-hole of the bromine using a constrained off-site point charge, does not improve results. We use results from molecular dynamics simulations to argue that the distinct binding affinities of this guest to OAH and OAMe are due to a difference in the flexibility of the host. We believe that the results of this extensive analysis of host-guest complexes will help improve the protocol used in predicting binding affinities for larger systems, such as protein-substrate compounds.

Keywords

Binding free energy simulations Thermodynamic integration Hamiltonian replica exchange Bennett acceptance ratio Double decoupling method Molecular dynamics simulations GalaxyDock-HG 

Notes

Acknowledgments

The authors would like to thank Tim Miller, Richard Venable and John Legato for technical assistance. We would also like to thank Richard Pastor for very helpful discussions concerning the importance of accurately evaluating the ionic concentration. We extend our gratitude to Andrew C. Simmonett and Michael Lerner for helpful comments on the manuscript. This work was partially supported by the intramural research program of the National Heart, Lung and Blood Institute (NHLBI) of the National Institutes of Health and employed the high-performance computational capabilities of the LoBoS and Biowulf Linux clusters at the National Institutes of Health. (http://www.lobos.nih.gov and (http://biowulf.nih.gov). Florentina Tofoleanu, Juyong Lee and Frank Pickard have been supported by the NHLBI Intramural Lenfant Biomedical Fellowship.

Supplementary material

10822_2016_9965_MOESM1_ESM.pdf (1.2 mb)
Supplementary material 1 (pdf 1236 KB)

References

  1. 1.
    Mobley DL, Dill KA, Chodera JD (2008) Treating entropy and conformational changes in implicit solvent simulations of small molecules. J Phys Chem B 112:938–946CrossRefGoogle Scholar
  2. 2.
    Mobley DL, Bayly CI, Cooper MD, Shirts MR, Dill KA (2009) Small molecule hydration free energies in explicit solvent: an extensive test of fixed-charge atomistic simulations. J Chem Theory Comput 5(2):350–358CrossRefGoogle Scholar
  3. 3.
    Oostenbrink C, van Gunsteren WF (2005) Free energies of ligand binding for structurally diverse compounds. Proc Natl Acad Sci USA 102(19):6750–6754CrossRefGoogle Scholar
  4. 4.
    Mobley DL, Graves AP, Chodera JD, McReynolds AC, Shoichet BK, Dill KA (2007) Predicting absolute ligand binding free energies to a simple model site. J Mol Biol 371(4):1118–1134CrossRefGoogle Scholar
  5. 5.
    Jorgensen WL (2004) The many roles of computation in drug discovery. Science 303(5665):1813–1818CrossRefGoogle Scholar
  6. 6.
    Severance DL, Essex JW, Jorgensen WL (1995) Generalized alteration of structure and parameters: a new method for free-energy perturbations in systems containing flexible degrees of freedom. J Comput Chem 16:311–327CrossRefGoogle Scholar
  7. 7.
    Bennett CH (1976) Efficient estimation of free energy differences from Monte Carlo data. J Comput Phys 22:245–268CrossRefGoogle Scholar
  8. 8.
    Shirts MR, Bair E, Hooker G, Pande VS (2003) Equilibrium free energies from nonequilibrium measurements using maximum-likelihood methods. Phys Rev Lett 91:140601CrossRefGoogle Scholar
  9. 9.
    Kirkwood JG (1935) Statistical mechanics of fluid mixtures. J Chem Phys 3:300–313CrossRefGoogle Scholar
  10. 10.
    Woo H-J, Roux B (2005) Calculation of absolute protein-ligand binding free energy from computer simulations. Proc Natl Acad Sci USA 102:6825–6830CrossRefGoogle Scholar
  11. 11.
    Velez-Vega C, Gilson MK (2013) Overcoming dissipation in the calculation of standard binding free energies by ligand extraction. J Comput Chem 34(27):2360–2371Google Scholar
  12. 12.
    Gumbart JC, Roux B, Chipot C (2013) Standard binding free energies from computer simulations: what is the best strategy? J Chem Theory Comput 9:794–802CrossRefGoogle Scholar
  13. 13.
    Jo S, Jiang W, Lee HS, Roux B, Im W (2013) Charmm-gui ligand binder for absolute binding free energy calculations and its application. J Chem Inf Model 53(1):267–277CrossRefGoogle Scholar
  14. 14.
    Nicholls A, Mobley DL, Guthrie JP, Chodera JD, Bayly CI, Cooper MD, Pande VS (2008) Predicting small-molecule solvation free energies: an informal blind test for computational chemistry. J Med Chem 51(4):769–779CrossRefGoogle Scholar
  15. 15.
    Guthrie JP (2009) A blind challenge for computational solvation free energies: introduction and overview. J Phys Chem B 113(14):4501–4507. doi:10.1021/jp806724u CrossRefGoogle Scholar
  16. 16.
    Geballe MT, Skillman AG, Nicholls A, Guthrie JP, Taylor PJ (2010) The SAMPL2 blind prediction challenge: introduction and overview. J Comput Aided Mol Des 24(4):259–279CrossRefGoogle Scholar
  17. 17.
    Muddana HS, Varnado CD, Bielawski CW, Urbach AR, Isaacs L, Geballe MT, Gilson MK (2012) Blind prediction of host-guest binding affinities: a new SAMPL3 challenge. J Comput Aided Mol Des 26(5):475–487. doi:10.1007/s10822-012-9554-1 CrossRefGoogle Scholar
  18. 18.
    Muddana HS, Fenley AT, Mobley DL, Gilson MK (2014) The sampl4 host-guest blind prediction challenge: an overview. J Comput Aided Mol Des 28(4):305–317CrossRefGoogle Scholar
  19. 19.
    Yin J, Henriksen NM, Slochower DR, Chiu MW, Mobley DL, Gilson MK (2016) Overview of the SAMPL5 host-guest challenge: are we doing better? J Comput Aided Mol Des. doi:10.1007/s10822-016-9974-4
  20. 20.
    Ellingson BA, Geballe MT, Wlodek S, Bayly CI, Skillman AG, Nicholls A (2014) Efficient calculation of SAMPL4 hydration free energies using OMEGA, SZYBKI, QUACPAC, and Zap TK. J Comput Aided Mol Des 28(3):289–298CrossRefGoogle Scholar
  21. 21.
    Beckstein O, Fourrier A, Iorga BI (2014) Prediction of hydration free energies for the SAMPL4 diverse set of compounds using molecular dynamics simulations with the OPLS-AA force field. J Comput Aided Mol Des 28(3):265–276CrossRefGoogle Scholar
  22. 22.
    Gallicchio E, Chen H, Chen H, Fitzgerald M, Gao Y, He P, Kalyanikar M, Kao C, Lu B, Niu Y, Pethe M, Zhu J, Levy RM (2015) BEDAM binding free energy predictions for the SAMPL4 octa-acid host challenge. J Comput Aided Mol Des 29(4):315–325CrossRefGoogle Scholar
  23. 23.
    Gan H, Benjamin CJ, Gibb BC (2011) Nonmonotonic assembly of a deep-cavity cavitand. J Am Chem Soc 133(13):4770–4773CrossRefGoogle Scholar
  24. 24.
    Gibb CLD, Gibb BC (2014) Binding of cyclic carboxylates to octa-acid deep-cavity cavitand. J Comput Aided Mol Des 28(4):319–325CrossRefGoogle Scholar
  25. 25.
    Laughrey ZR, Upton TG, Gibb BC (2006) A deuterated deep-cavity cavitand confirms the importance of C–H⋯X–R hydrogen bonds in guest binding. Chem Commun 9:970–972CrossRefGoogle Scholar
  26. 26.
    Gibb CLD, Stevens ED, Gibb BC (2001) CH\(\cdots\)XR (X=Cl, Br, and I) hydrogen bonds drive the complexation properties of a nanoscale molecular basket. J Am Chem Soc 123(24):5849–5850CrossRefGoogle Scholar
  27. 27.
    Gibb BC et al (2016) SAMPL5 experimental paper. J Comput Aided Mol DesGoogle Scholar
  28. 28.
    Hogues H, Sulea T, Purisima EO (2014) Exhaustive docking and solvated interaction energy scoring: lessons learned from the sampl4 challenge. J Chem Inf Model 28(4):417–427Google Scholar
  29. 29.
    Mikulskis P, Cioloboc D, Andrejić M, Khare S, Brorsson J, Genheden S, Mata RA, Söderhjelm P, Ryde U (2014) Free-energy perturbation and quantum mechanical study of sampl4 octa-acid host-guest binding energies. J Comput Aided Mol Des 28(4):375–400CrossRefGoogle Scholar
  30. 30.
    Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174CrossRefGoogle Scholar
  31. 31.
    Lee J, Tofoleanu F, König G, Pickard FC IV, Huang J, Damjanović A, Baek M, Seok C, Brooks BR (2016) CBClip and guests. Same IssueGoogle Scholar
  32. 32.
    Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, MacKerell AD Jr (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31(4):671–690Google Scholar
  33. 33.
    Gutirrez IS, Lin FY, Vanommeslaeghe K, Lemkul JA, Armacost KA, Brooks CL III, MacKerell AD Jr. (2016) Parametrization of halogen bonds in the CHARMM general force field: improved treatment of ligandprotein interactions. Bioorg Med Chem. doi:10.1016/j.bmc.2016.06.034
  34. 34.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935CrossRefGoogle Scholar
  35. 35.
    Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM—a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187CrossRefGoogle Scholar
  36. 36.
    Brooks BR, Brooks CL III, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodošček M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614CrossRefGoogle Scholar
  37. 37.
    Hoover WG (1985) Canonical dynamics—equilibrium phase-space distributions. Phys Rev A 31:1695CrossRefGoogle Scholar
  38. 38.
    Feller SE, Yhang YH, Pastor RW, Brooks BR (1995) Constant pressure molecular dynamics simulation: the Langevin piston method. J Chem Phys 103:4613CrossRefGoogle Scholar
  39. 39.
    van Gunsteren WF, Berendsen HJC (1977) Algorithms for macromolecular dynamics and costraint dynamics. Mol Phys 34:1311–1327CrossRefGoogle Scholar
  40. 40.
    Huey R, Morris GM, Olson AJ, Goodsell DS (2007) A semiempirical free energy force field with charge-based desolvation. J Comput Chem 28(6):1145–1152CrossRefGoogle Scholar
  41. 41.
    Shin W-H, Kim J-K, Kim D-S, Seok C (2013) GalaxyDock2: protein-ligand docking using beta-complex and global optimization. J Comput Chem 34(30):2647–2656CrossRefGoogle Scholar
  42. 42.
    Shin W-H, Lee GR, Seok C (2015) Evaluation of GalaxyDock based on the community structure activity resource 2013 and 2014 benchmark studies. J Chem Inf Model 56(6):988–995Google Scholar
  43. 43.
    Lee J, Scheraga HA, Rackovsky S (1997) New optimization method for conformational energy calculations on polypeptides: conformational space annealing. J Comput Chem 18(9):1222–1232CrossRefGoogle Scholar
  44. 44.
    Shin W-H, Heo L, Lee J, Ko J, Seok C, Lee J (2011) Ligdockcsa: proteinligand docking using conformational space annealing. J Comput Chem 32(15):3226–3232CrossRefGoogle Scholar
  45. 45.
    Gilson MK, Given JA, Bush BL, McCammon JA (1997) The statistical-thermodynamic basis for computation of binding affinities: a critical review. Biophys J 72:1047–1069CrossRefGoogle Scholar
  46. 46.
    Boresch S, Tettinger F, Leitgeb M, Karplus M (2003) Absolute binding free energies: a quantitative approach for their calculation. J Phys Chem B 107:9535–9551CrossRefGoogle Scholar
  47. 47.
    Fukunishi H, Watanabe O, Takada S (2002) On the Hamiltonian replica exchange method for efficient sampling of biomolecular systems: application to protein structure predictions. J Chem Phys 116(20):9058–9067CrossRefGoogle Scholar
  48. 48.
    Itoh SG, Okumura H, Okamoto Y (2010) Replica-exchange in van der waals radius space: overcoming steric restrictions for biomolecules. J Chem Phys 132:134105CrossRefGoogle Scholar
  49. 49.
    Itoh SG, Okumura H (2013) Hamiltonian replica-permutation method and its applications to an alanine dipeptide and amyloid-\(\beta\)(29–42) peptides. J Comput Chem 34:2493–2497CrossRefGoogle Scholar
  50. 50.
    König G, Bruckner S, Boresch S (2009) Unorthodox uses of Bennett acceptance ratio method. J Comput Chem 30:1712–1718CrossRefGoogle Scholar
  51. 51.
    König G, Brooks BR (2012) Predicting binding affinities of host-guest systems in the SAMPL3 blind challenge: the performance of relative free energy calculations. J Comput Aided Mol Des 26:543–550CrossRefGoogle Scholar
  52. 52.
    König G, Pickard IV FC, Mei Y, Brooks BR (2011a) Predicting hydration free energies with a hybrid QM/MM approach: an evaluation of implicit and explicit solvent models in sampl4. J Comput Aided Mol Des 28:245–257CrossRefGoogle Scholar
  53. 53.
    König G, Hudson PS, Boresch S (2011b) Multiscale free energy simulations: an efficient method for connecting classical md simulations to QM or QM/MM free energies using non-boltzmann bennett reweighting schemes. J Chem Theory Comput 10(4):1406–1419CrossRefGoogle Scholar
  54. 54.
    Mobley DL, Dill KA (2009) Binding of small-molecule ligands to proteins: “What you see” is not always “what you get”. Structure 17(4):489–498CrossRefGoogle Scholar
  55. 55.
    Bruckner S, Boresch S (2011) Efficiency of alchemical eree energy simulations I: practical comparison of the exponential formula, thermodynamic integration and Bennett’s acceptance ratio method. J Comput Chem 32:1303–1319CrossRefGoogle Scholar
  56. 56.
    Bruckner S, Boresch S (2011) Efficiency of alchemical free energy simulations II: improvements for thermodynamic integration. J Comput Chem 32:1320–1333CrossRefGoogle Scholar
  57. 57.
    Zacharias M, Straatsma TP, Lennard-Jones JA (1994) Separation-shifted scaling, a new scaling method for lennard-jones interactions in thermodynamic integration. J Chem Phys 100:9025CrossRefGoogle Scholar
  58. 58.
    Beutler TC, Mark AE, van Schaik RC, Gerber PR, van Gunsteren WF (1994) Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations. Chem Phys Lett 222:529–539CrossRefGoogle Scholar
  59. 59.
    Boresch S, Bruckner S (2011) Avoiding the van der Waals endpoint problem using serial atomic insertion. J Comput Chem 32(11):2449–2458CrossRefGoogle Scholar
  60. 60.
    Murray JS, Lane P, Politzer P (2009) Expansion of the σ-hole concept. J Mol Model 15(6):723–729CrossRefGoogle Scholar
  61. 61.
    Laughrey ZR, Gibb CLD, Senechal T, Gibb BC (2003) Guest binding and orientation within open nanoscale hosts. Chem Eur J 9(1):130–139CrossRefGoogle Scholar
  62. 62.
    van Wageningen AMA, Timmerman P, van Duynhoven JPM, Verboom W, van Veggel FCJM, and Reinhoudt DN (1997) Calix[4]arene-based (hemi)carcerands and carceplexes: synthesis, functionalization, and molecular modeling study. Chem Eur J 3(4):639–654CrossRefGoogle Scholar
  63. 63.
    Paek K, Ihm H, Yun S, Lee HC (1999) Carceroisomerism and twistomerism in \({\text{ C }}_{4v}\) tetraoxatetrathiahemicarceplexes. Tetrahedron Lett. 40(50):8905–8909CrossRefGoogle Scholar
  64. 64.
    Jiao D, Golubkov PA, Darden TA, Ren P (2008) Calculation of proteinligand binding free energy by using a polarizable potential. Proc Natl Acad Sci USA 105(17):6290–6295CrossRefGoogle Scholar
  65. 65.
    Gilson MK, Zhou H-X (2007) Calculation of protein-ligand binding affinities. Annu Rev Biophys Biomol Struct 36:21–42CrossRefGoogle Scholar
  66. 66.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J. and Fox DJ (2010) Gaussian 09, Revision B.01, Gaussian, Inc., WallingfordGoogle Scholar
  67. 67.
    Zhao Y, Truhlar DG (2007) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor Chem Acc 120:215–241CrossRefGoogle Scholar
  68. 68.
    Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Acc Chem Res 41:157–167CrossRefGoogle Scholar
  69. 69.
    Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113(18):6378–6396CrossRefGoogle Scholar
  70. 70.
    Hariharan PC, Pople JA (1974) Accuracy of \(\text{ AH }_{n}\) equilibrium geometries by single determinant molecular orbital theory. Mol Phys 27(1):209–214CrossRefGoogle Scholar
  71. 71.
    Casasnovas R, Ortega-Castro J, Frau J, Donoso J, Muoz F (2014) Theoretical pKa calculations with continuum model solvents, alternative protocols to thermodynamic cycles. Int J Quantum Chem 114(20):1350–1363CrossRefGoogle Scholar
  72. 72.
    Liptak MD, Shields GC (2001) Accurate pK(a) calculations for carboxylic acids using complete basis set and Gaussian-n models combined with CPCM continuum solvation methods. J Am Chem Soc 123(30):7314–7319CrossRefGoogle Scholar
  73. 73.
    Perrin DD (1982) Ionization constants of inorganic acids and bases in aqueous solution, 2nd edn. Pergamon, OxfordGoogle Scholar
  74. 74.
    Majstorovic V (2011) Changes in high-molecular weight compounds during beech litter decomposition. Masters thesisGoogle Scholar
  75. 75.
    Cullen W, Turega S, Hunter CA, Ward MD (2015) pH-dependent binding of guests in the cavity of a polyhedral coordination cage: reversible uptake and release of drug molecules. Chem Sci 6:625–631CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland (outside the USA) 2016

Authors and Affiliations

  1. 1.Laboratory of Computational BiologyNational Institutes of Health – National Heart, Lung, and Blood InstituteRockvilleUSA
  2. 2.Max-Planck-Institut für KohlenforschungMülheim an der RuhrGermany
  3. 3.Department of Pharmaceutical Science, School of PharmacyUniversity of MarylandBaltimoreUSA
  4. 4.Department of ChemistrySeoul National UniversitySeoulRepublic of Korea

Personalised recommendations