Advertisement

Journal of Computer-Aided Molecular Design

, Volume 30, Issue 11, pp 1007–1017 | Cite as

Predicting cyclohexane/water distribution coefficients for the SAMPL5 challenge using MOSCED and the SMD solvation model

  • Sebastian Diaz-Rodriguez
  • Samantha M. Bozada
  • Jeremy R. Phifer
  • Andrew S. PaluchEmail author
Article

Abstract

We present blind predictions using the solubility parameter based method MOSCED submitted for the SAMPL5 challenge on calculating cyclohexane/water distribution coefficients at 298 K. Reference data to parameterize MOSCED was generated with knowledge only of chemical structure by performing solvation free energy calculations using electronic structure calculations in the SMD continuum solvent. To maintain simplicity and use only a single method, we approximate the distribution coefficient with the partition coefficient of the neutral species. Over the final SAMPL5 set of 53 compounds, we achieved an average unsigned error of \(2.2\pm 0.2\) log units (ranking 15 out of 62 entries), the correlation coefficient (R) was \(0.6\pm 0.1\) (ranking 35), and \(72\pm 6\,\%\) of the predictions had the correct sign (ranking 30). While used here to predict cyclohexane/water distribution coefficients at 298 K, MOSCED is broadly applicable, allowing one to predict temperature dependent infinite dilution activity coefficients in any solvent for which parameters exist, and provides a means by which an excess Gibbs free energy model may be parameterized to predict composition dependent phase-equilibrium.

Keywords

SAMPL5 SMD MOSCED Free energy of solvation Distribution coefficient 

Notes

Acknowledgments

The authors are grateful for the assistance of Dr. Rafiqul Gani (DTU) for providing a copy of ICAS 17.0 which was used in this work. Computing support was provided by the Ohio Supercomputer Center.

Supplementary material

10822_2016_9945_MOESM1_ESM.xls (3.2 mb)
Supplementary material 1 (xls 3249 KB)
10822_2016_9945_MOESM2_ESM.xls (213 kb)
Supplementary material 2 (xls 213 KB)

References

  1. 1.
    Bannan CC, Burley KH, Chiu M, Shirts MR, Gilson MK, Mobley DL (2016) Blind prediction of cyclohexane–water distribution coefficients from the SAMPL5 challenge. J Comput Aided Mol Des. doi: 10.1007/s10822-016-9954-8 Google Scholar
  2. 2.
    Blanks RF, Prausnits JM (1964) Thermodynamics of polymer solubility in polar and nonpolar systems. Ind Eng Chem Fundam 3:1–8CrossRefGoogle Scholar
  3. 3.
    Cramer CJ (2002) Essentials of computational chemistry. Wiley, ChichesterGoogle Scholar
  4. 4.
    Eaton JW, Bateman D, Hauberg S (2009) GNU Octave version 3.0.1 manual: a high-level interactive language for numerical computations. Create Space Independent Publishing Platform, http://www.gnu.org/software/octave/doc/interpreter, ISBN 1441413006
  5. 5.
    Efron B (1982) The jackknife, the bootstrap and other resampling plans. Society for Industrial and Applied Mathematics, PhiladelphiaCrossRefGoogle Scholar
  6. 6.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision C.01. Gaussian Inc., Wallingford, CTGoogle Scholar
  7. 7.
    Fuerst GB, Ley RT, Paluch AS (2015) Calculating the fugacity of pure, low volatile liquids via molecular simulation with application to acetanilide, acetaminophen, and phenacetin. Ind Eng Chem Res 54:9027–9037CrossRefGoogle Scholar
  8. 8.
    Hansen CM (1969) The universality of the solubility parameter. Ind Eng Chem Prod Res Dev 8:2–11CrossRefGoogle Scholar
  9. 9.
    Hildebrand JH, Prausnitz JM, Scott RL (1970) Regular and related solutions. Van Nostrand Reinhold Company, New YorkGoogle Scholar
  10. 10.
    Hukkerikar AS, Sarup B, Kate AT, Abildskov J, Sin G, Gani R (2012) Group-contribution+(gc+) based estimation of properties of pure components: improved property estimation and uncertainty analysis. Fluid Phase Equilib 321:25–43CrossRefGoogle Scholar
  11. 11.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38CrossRefGoogle Scholar
  12. 12.
    Klamt A, Eckert F, Reinisch J, Winchmann K (2016) Prediction of cyclohexane-water distribution coefficients with COSMO-RS on the SAMPL5 data set. J Comput Aided Mol Des. doi: 10.1007/s10822-016-9927-y Google Scholar
  13. 13.
    Lazzaroni MJ, Bush D, Eckert CA, Frank TC, Gupta S, Olson JD (2005) Revision of MOSCED parameters and extension to solid solubility calculations. Ind Eng Chem Res 44:4075–4083CrossRefGoogle Scholar
  14. 14.
    Ley RT, Fuerst GB, Redeker BN, Paluch AS (2016) Developing a predictive form of MOSCED for non-electrolyte solids using molecular simulation: application to Acetanilide, Acetaminophen and Phenacetin. Ind Eng Chem Res 55:5415–5430CrossRefGoogle Scholar
  15. 15.
    Liu S, Cao S, Hoang K, Young KL, Paluch AS, Mobley DL (2016) Using MD simlations to calculate how solvents modulate solubility. J Chem Theory Comput 12:1930–1941CrossRefGoogle Scholar
  16. 16.
    Marenich AV, Cramer CJ, Truhlar DG (2009a) Performance of SM6, SM8, and SMD on the SAMPL1 test set for the prediction of small-molecule solvation free energies. J Phys Chem B 113:4538–4543CrossRefGoogle Scholar
  17. 17.
    Marenich AV, Cramer CJ, Truhlar DG (2009b) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396CrossRefGoogle Scholar
  18. 18.
    O’Connell JP, Haile JM (2005) Thermodynamics: fundamentals for applications. Cambridge University Press, New YorkCrossRefGoogle Scholar
  19. 19.
    Paluch AS, Maginn EJ (2013) Predicting the solubility of solid Phenanthrene: a combined molecular simulation and group contribution approach. AIChE J 59:2647–2661CrossRefGoogle Scholar
  20. 20.
    Paluch AS, Parameswaran S, Liu S, Kolavennu A, Mobley DL (2015) Predicting the excess solubility of Acetanilide, Acetaminophen, Phenacetin, Benzocaine and Caffeine in binary water/ethanol mixtures via molecular simulation. J Chem Phys 142(044):508Google Scholar
  21. 21.
    Phifer JR, Solomon KJ, Young KL, Paluch AS (2016) Computing MOSCED parameters of nonelectrolyte solids with electronic structure methods in SMD and SM8 continuum solvents. AIChE J. doi: 10.1002/aic.15413 Google Scholar
  22. 22.
    Prausnitz JM, Lichtenthaler RN, de Azevedo EG (1999) Molecular thermodynamics of fluid-phase equilibria, 3rd edn. Prentice-Hall Inc, Upper Saddle RiverGoogle Scholar
  23. 23.
    Rai N, Siepmann JI (2007) Transferable potentials for phase equilibria. 9. Explicit hydrogen description of benzene and five-membered and six-membered heterocyclic aromatic compounds. J Phys Chem B 111:10790–10799CrossRefGoogle Scholar
  24. 24.
    Rai N, Siepmann JI (2013) Transferable potentials for phase equilibria. 10. Explicit-hydrogen description of substituted benzenes and polycyclic aromatic compounds. J Phys Chem B 117:273–288CrossRefGoogle Scholar
  25. 25.
    Rai N, Bhatt D, Siepmann JI, Fried LE (2008) Monte Carlo simulations of 1,3,5-triamino-2,4,6-trinitrobenzene (tatb): pressure and temperature effects for the solid phase and vapor-liquid phase equilibria. J Chem Phys 129(194):510Google Scholar
  26. 26.
    Ribeiro RF, Marenich AV, Cramer CJ, Truhlar DG (2010) Prediction of SAMPL2 aqueous solvation free energies and tautomeric ratios using the SM8, SM8AD, and SMD solvation models. J Comput Aided Mol Des 24:317–333CrossRefGoogle Scholar
  27. 27.
    Rustenburg AS, Dancer J, Lin B, Ortwine DF, Mobley DL, Chodera JD (2016) Measuring experimental cyclohexane/water distribution coefficients for the SAMPL5 challenge. J Comput Aided Mol Des (in press)Google Scholar
  28. 28.
    Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359CrossRefGoogle Scholar
  29. 29.
    Thomas ER, Eckert CA (1984) Prediction of limiting activity coefficients by a modified separation of cohesive energy density model and UNIFAC. Ind Eng Chem Proc Des Dev 23:194–209CrossRefGoogle Scholar
  30. 30.
    Winget P, Hawkins GD, Cramer CJ, Truhlar DG (2000) Prediction of vapor pressures from self-solvation free energies calculated by the sm5 series of universal solvation models. J Phys Chem B 104:4726–4734CrossRefGoogle Scholar
  31. 31.
    Zhao Y, Truhlar DG (2008) The M06 theory of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Sebastian Diaz-Rodriguez
    • 1
  • Samantha M. Bozada
    • 1
  • Jeremy R. Phifer
    • 1
  • Andrew S. Paluch
    • 1
    Email author
  1. 1.Department of Chemical, Paper and Biomedical EngineeringMiami UniversityOxfordUSA

Personalised recommendations