Journal of Computer-Aided Molecular Design

, Volume 30, Issue 8, pp 595–608 | Cite as

Molecular graph convolutions: moving beyond fingerprints

  • Steven Kearnes
  • Kevin McCloskey
  • Marc Berndl
  • Vijay Pande
  • Patrick Riley
Article

Abstract

Molecular “fingerprints” encoding structural information are the workhorse of cheminformatics and machine learning in drug discovery applications. However, fingerprint representations necessarily emphasize particular aspects of the molecular structure while ignoring others, rather than allowing the model to make data-driven decisions. We describe molecular graph convolutions, a machine learning architecture for learning from undirected graphs, specifically small molecules. Graph convolutions use a simple encoding of the molecular graph—atoms, bonds, distances, etc.—which allows the model to take greater advantage of information in the graph structure. Although graph convolutions do not outperform all fingerprint-based methods, they (along with other graph-based methods) represent a new paradigm in ligand-based virtual screening with exciting opportunities for future improvement.

Keywords

Machine learning Virtual screening Deep learning Artificial neural networks Molecular descriptors 

Supplementary material

10822_2016_9938_MOESM1_ESM.pdf (1.2 mb)
Supplementary material 1 (pdf 1207 KB)

References

  1. 1.
    Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M et al (2015) TensorFlow: large-scale machine learning on heterogeneous systems. Software. http://tensorflow.org
  2. 2.
    Ballester PJ, Richards WG (2007) Ultrafast shape recognition to search compound databases for similar molecular shapes. J Comput Chem 28(10):1711–1723CrossRefGoogle Scholar
  3. 3.
    Bruna J, Zaremba W, Szlam A, LeCun Y (2013) Spectral networks and locally connected networks on graphs. arXiv:1312.6203
  4. 4.
    Carhart RE, Smith DH, Venkataraghavan R (1985) Atom pairs as molecular features in structure-activity studies: definition and applications. J Chem Inf Comput Sci 25(2):64–73CrossRefGoogle Scholar
  5. 5.
    Dahl G (2012) Deep learning how I did it: Merck 1st place interview.http://blog.kaggle.com/2012/11/01/deep-learning-how-i-did-it-merck-1st-place-interview
  6. 6.
    Dahl GE, Jaitly N, Salakhutdinov R (2014) Multi-task neural networks for QSAR predictions. arXiv:1406.1231
  7. 7.
    Dieleman S (2015) Classifying plankton with deep neural networks. 17 Mar 2015. http://benanne.github.io/2015/03/17/plankton.html
  8. 8.
    Duchi J, Hazan E, Singer Y (2011) Adaptive subgradient methods for online learning and stochastic optimization. J Mach Learn Res 12:2121–2159Google Scholar
  9. 9.
    Duvenaud DK, Maclaurin D, Iparraguirre J, Bombarell R, Hirzel T, Aspuru-Guzik A, Adams RP (2015) Convolutional networks on graphs for learning molecular fingerprints. In: Advances in neural information processing systems, pp 2224–2232Google Scholar
  10. 10.
    Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity–a rapid access to atomic charges. Tetrahedron 36(22):3219–3228CrossRefGoogle Scholar
  11. 11.
    Hawkins PCD, Skillman AG, Nicholls A (2007) Comparison of shape-matching and docking as virtual screening tools. J Med Chem 50(1):74–82CrossRefGoogle Scholar
  12. 12.
    Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167
  13. 13.
    Jain AN, Nicholls A (2008) Recommendations for evaluation of computational methods. J Comput Aided Mol Des 22(3–4):133–139CrossRefGoogle Scholar
  14. 14.
    Landrum G (2014) RDKit: open-source cheminformatics. http://www.rdkit.org
  15. 15.
    LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444CrossRefGoogle Scholar
  16. 16.
    Lusci A, Pollastri G, Baldi P (2013) Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules. J Chem Inf Model 53(7):1563–1575CrossRefGoogle Scholar
  17. 17.
    Ma J, Sheridan RP, Liaw A, Dahl GE, Svetnik V (2015) Deep neural nets as a method for quantitative structure–activity relationships. J Chem Inf Model 55(2):263–274CrossRefGoogle Scholar
  18. 18.
    Masci J, Boscaini D, Bronstein M, Vandergheynst P (2015) Geodesic convolutional neural networks on riemannian manifolds. In: Proceedings of the IEEE international conference on computer vision workshops, pp 37–45Google Scholar
  19. 19.
    Mayr A, Klambauer G, Unterthiner T, Hochreiter S (2015) Deeptox: toxicity prediction using deep learning. Front Environ Sci 3:80Google Scholar
  20. 20.
    McGill R, Tukey JW, Larsen WA (1978) Variations of box plots. Am Stat 32(1):12–16Google Scholar
  21. 21.
    Merkwirth C, Lengauer T (2005) Automatic generation of complementary descriptors with molecular graph networks. J Chem Inf Model 45(5):1159–1168CrossRefGoogle Scholar
  22. 22.
    Micheli A (2009) Neural network for graphs: a contextual constructive approach. IEEE Trans Neural Netw 20(3):498–511CrossRefGoogle Scholar
  23. 23.
    Muchmore SW, Souers AJ, Akritopoulou-Zanze I (2006) The use of three-dimensional shape and electrostatic similarity searching in the identification of a melanin-concentrating hormone receptor 1 antagonist. Chem Biol Drug Des 67(2):174–176CrossRefGoogle Scholar
  24. 24.
    Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 55(14):6582–6594CrossRefGoogle Scholar
  25. 25.
    Nicholls A, McGaughey GB, Sheridan RP, Good AC, Warren G, Mathieu M, Muchmore SW, Brown SP, Grant JA, Haigh JA et al (2010) Molecular shape and medicinal chemistry: a perspective. J Med Chem 53(10):3862–3886CrossRefGoogle Scholar
  26. 26.
    OpenEye GraphSim Toolkit. OpenEye Scientific Software, Santa Fe, NM. http://www.eyesopen.com
  27. 27.
    Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830Google Scholar
  28. 28.
    Petrone PM, Simms B, Nigsch F, Lounkine E, Kutchukian P, Cornett A, Deng Z, Davies JW, Jenkins JL, Glick M (2012) Rethinking molecular similarity: comparing compounds on the basis of biological activity. ACS Chem Biol 7(8):1399–1409CrossRefGoogle Scholar
  29. 29.
    Ramsundar B, Kearnes S, Riley P, Webster D, Konerding D, Pande V (2015) Massively multitask networks for drug discovery. arXiv:1502.02072
  30. 30.
    Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50(5):742–754CrossRefGoogle Scholar
  31. 31.
    Rohrer SG, Baumann K (2009) Maximum unbiased validation (MUV) data sets for virtual screening based on pubchem bioactivity data. J Chem Inf Model 49(2):169–184CrossRefGoogle Scholar
  32. 32.
    Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323:533–536CrossRefGoogle Scholar
  33. 33.
    Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G (2009) The graph neural network model. IEEE Trans Neural Netw 20(1):61–80CrossRefGoogle Scholar
  34. 34.
    Seabold S, Perktold J (2010) Statsmodels: econometric and statistical modeling with python. In: Proceedings of the 9th Python in science conference, pp 57–61Google Scholar
  35. 35.
    Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958Google Scholar
  36. 36.
    Swamidass JS, Azencott C-A, Lin T-W, Gramajo H, Tsai S-C, Baldi P (2009) Influence relevance voting: an accurate and interpretable virtual high throughput screening method. J Chem Inf Model 49(4):756–766CrossRefGoogle Scholar
  37. 37.
    Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: CVPR 2015. arxiv.org/abs/1409.4842
  38. 38.
    Todeschini R, Consonni V (2009) Molecular descriptors for chemoinformatics, volume 41 (2 volume set), vol 41. Wiley, New YorkCrossRefGoogle Scholar
  39. 39.
    Truchon J-F, Bayly CI (2007) Evaluating virtual screening methods: good and bad metrics metrics for the âĂIJearly recognitionâĂİ problem. J Chem Inf Model 47(2):488–508CrossRefGoogle Scholar
  40. 40.
    Wallach I, Dzamba M, Heifets A (2015) AtomNet: a deep convolutional neural network for bioactivity prediction in structure-based drug discovery. arXiv:1510.02855
  41. 41.
    Yanli W, Xiao J, Suzek TO, Zhang J, Wang J, Zhou Z, Han L, Karapetyan K, Dracheva S, Shoemaker BA et al (2012) PubChem’s BioAssay database. Nucl Acids Res 40(D1):D400–D412CrossRefGoogle Scholar
  42. 42.
    Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Stanford UniversityStanfordUSA
  2. 2.Google Inc.Mountain ViewUSA

Personalised recommendations