Journal of Computer-Aided Molecular Design

, Volume 30, Issue 11, pp 959–967 | Cite as

Prediction of cyclohexane-water distribution coefficients with COSMO-RS on the SAMPL5 data set

  • Andreas Klamt
  • Frank Eckert
  • Jens Reinisch
  • Karin Wichmann


The Conductor-Like-Screening-Model for Real Solvents (COSMO-RS) method has been used for the blind prediction of cyclohexane-water distribution coefficients logD within the SAMPL challenge. The partition coefficient logP of the neutral species was calculated first and then corrected for dissociation or protonation, as appropriate for acidic or basic solutes, to obtain the cyclohexane-water logD. Using the latest version of the COSMOtherm implementation, this approach in combination with a rigorous conformational sampling yielded a predictive accuracy of 2.11 log units (RMSD) for the 53 compounds of the blind prediction dataset. By that it was the most accurate of all contest submissions and it also achieved the best rank order. The RMSD mainly arises from a group of outliers in the negative logD range, which at least partly may arise from dimerization or other experimental problems coming up for very polar molecules in very non-polar solvents.


Solvation Distribution coefficients COSMO-RS SAMPL5 Molecular modeling Molecular simulation 

Supplementary material

10822_2016_9927_MOESM1_ESM.pdf (630 kb)
Supplementary material 1 (PDF 630 kb)


  1. 1.
    COSMOtherm C3.0 (2015) Release 16.01. COSMOlogic GmbH & Co. KG. Leverkusen, Germany
  2. 2.
    Klamt A (1995) Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. J Phys Chem 99:2224–2235. doi: 10.1021/j100007a062 CrossRefGoogle Scholar
  3. 3.
    Klamt A, Jonas V, Bürger T, Lohrenz JC (1998) Refinement and parametrization of COSMO-RS. J Phys Chem A 102:5074–5085. doi: 10.1021/jp980017s CrossRefGoogle Scholar
  4. 4.
    Rustenburg AS, Dancer J, Lin B, Feng J, Ortwine DF, Mobley DL, Chodera JD (2016) Measuring experimental cyclohexane-water distribution coefficients for the SAMPL5 challenge. J Comput Aided Mol Des (in press)Google Scholar
  5. 5.
    Klamt A, Diedenhofen M (2010) Blind prediction test of free energies of hydration with COSMO-RS. J Comput Aided Mol Des 24:357–360. doi: 10.1007/s10822-010-9354-4 CrossRefGoogle Scholar
  6. 6.
    Marenich AV, Kelly CP, Thompson JD, Hawkins GD, Chambers CC, Giesen DJ, Winget P, Cramer CJ, Truhlar DG (2009) Minnesota solvation database –version 2009, University of Minnesota, MinneapolisGoogle Scholar
  7. 7.
    Klamt A, Mennucci B, Tomasi J et al (2009) On the performance of continuum solvation methods. A comment on “Universal approaches to solvation modeling”. Acc Chem Res 42:489–492. doi: 10.1021/ar800187p CrossRefGoogle Scholar
  8. 8.
    Klamt A, Diedenhofen M (2015) Calculation of solvation free energies with DCOSMO-RS. J Phys Chem A 119:5439–5445. doi: 10.1021/jp511158y CrossRefGoogle Scholar
  9. 9.
    Klamt A, Schüürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2(1993):799–805. doi: 10.1039/P29930000799 CrossRefGoogle Scholar
  10. 10.
    Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102:1995–2001CrossRefGoogle Scholar
  11. 11.
    Klamt A, Moya C, Palomar J (2015) A comprehensive comparison of the IEFPCM and SS(V)PE continuum solvation methods with the COSMO approach. J Chem Theory Comput. doi: 10.1021/acs.jctc.5b00601 Google Scholar
  12. 12.
    COSMOconf 4.0 (2015) COSMOlogic GmbH & Co. KG. Leverkusen, Germany
  13. 13.
    Klamt A, Eckert F, Diedenhofen M (2009) Prediction of the free energy of hydration of a challenging set of pesticide-like compounds. J Phys Chem B 113:4508–4510. doi: 10.1021/jp805853y CrossRefGoogle Scholar
  14. 14.
    TURBOMOLE 7.0 (2015) University of Karlsruhe and Forschungszentrum Karlsruhe GmbH (1989–2007), TURBOMOLE GmbH (since 2007). Karlsruhe, Germany
  15. 15.
    Klamt A, Eckert F, Diedenhofen M, Beck ME (2003) First principles calculations of aqueous pKa values for organic and inorganic acids using COSMO-RS reveal an inconsistency in the slope of the pKa scale. J Phys Chem A 107:9380–9386. doi: 10.1021/jp034688o CrossRefGoogle Scholar
  16. 16.
    Leo AJ (2007) BioByte Masterfile, BioByte Corporation, Claremont, CA, USAGoogle Scholar
  17. 17.
    Smith DA, Jones BC, Walker DK (1996) Design of drugs involving the concepts and theories of drug metabolism and pharmacokinetics. Med Res Rev 16:243–266. doi: 10.1002/(SICI)1098-1128(199605)16:3<243:AID-MED2>3.0.CO;2-Z CrossRefGoogle Scholar
  18. 18.
    MacDonald SM, Opallo M, Klamt A et al (2008) Probing carboxylate Gibbs transfer energies via liquid|liquid transfer at triple phase boundary electrodes: ion-transfer voltammetry versus COSMO-RS predictions. Phys Chem Chem Phys 10:3925–3933. doi: 10.1039/b803582b CrossRefGoogle Scholar
  19. 19.
    Volume Editors (2005) IUPAC-NIST solubility data series 81. Hydrocarbons with water and seawater—revised and updated. Part 3. C [sub 6]H [sub 8]–C [sub 6]H [sub 12] hydrocarbons with water and heavy water. J Phys Chem Ref Data 34:657. doi: 10.1063/1.1796631 CrossRefGoogle Scholar
  20. 20.
    Sachsenhauser T, Rehfeldt S, Klamt A et al (2014) Consideration of dimerization for property prediction with COSMO-RS-DARE. Fluid Phase Equilib 382:89–99. doi: 10.1016/j.fluid.2014.08.030 CrossRefGoogle Scholar
  21. 21.
    Klamt A (2016) COSMO-RSC: 2nd order quasi-chemical theory recovering local surface correlation effects. J Phys Chem A. doi: 10.1021/acs.jpca.6b00757 Google Scholar
  22. 22.
    Shih P, Pedersen LG, Gibbs PR, Wolfenden R (1998) Hydrophobicities of the nucleic acid bases: distribution coefficients from water to cyclohexane. J Mol Biol 280:421–430CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Andreas Klamt
    • 1
    • 2
  • Frank Eckert
    • 1
  • Jens Reinisch
    • 1
  • Karin Wichmann
    • 1
  1. 1.COSMOlogic GmbH&CoKGLeverkusenGermany
  2. 2.Institute of Physical and Theoretical ChemistryUniversity of RegensburgRegensburgGermany

Personalised recommendations