Journal of Computer-Aided Molecular Design

, Volume 30, Issue 7, pp 541–552 | Cite as

Drug search for leishmaniasis: a virtual screening approach by grid computing

  • Rodrigo Ochoa
  • Stanley J. Watowich
  • Andrés Flórez
  • Carol V. Mesa
  • Sara M. Robledo
  • Carlos MuskusEmail author


The trypanosomatid protozoa Leishmania is endemic in ~100 countries, with infections causing ~2 million new cases of leishmaniasis annually. Disease symptoms can include severe skin and mucosal ulcers, fever, anemia, splenomegaly, and death. Unfortunately, therapeutics approved to treat leishmaniasis are associated with potentially severe side effects, including death. Furthermore, drug-resistant Leishmania parasites have developed in most endemic countries. To address an urgent need for new, safe and inexpensive anti-leishmanial drugs, we utilized the IBM World Community Grid to complete computer-based drug discovery screens (Drug Search for Leishmaniasis) using unique leishmanial proteins and a database of 600,000 drug-like small molecules. Protein structures from different Leishmania species were selected for molecular dynamics (MD) simulations, and a series of conformational “snapshots” were chosen from each MD trajectory to simulate the protein’s flexibility. A Relaxed Complex Scheme methodology was used to screen ~2000 MD conformations against the small molecule database, producing >1 billion protein-ligand structures. For each protein target, a binding spectrum was calculated to identify compounds predicted to bind with highest average affinity to all protein conformations. Significantly, four different Leishmania protein targets were predicted to strongly bind small molecules, with the strongest binding interactions predicted to occur for dihydroorotate dehydrogenase (LmDHODH; PDB:3MJY). A number of predicted tight-binding LmDHODH inhibitors were tested in vitro and potent selective inhibitors of Leishmania panamensis were identified. These promising small molecules are suitable for further development using iterative structure-based optimization and in vitro/in vivo validation assays.


Drug discovery Grid computing Leishmania Relaxed Complex Scheme 



This work was supported IBM’s World Community Grid initiative and the Center of Science, Technology and Innovation from Colombia—Colciencias (CT-200-2010).

Author contributions

R. O. prepared the input data, stored and filtered the output data, designed the analysis protocols and wrote the manuscript. S.J.W. reviewed the protocols and contributed to the editing and final versions of the manuscript. A.F. prepared input data, performed alpha and beta tests. S.M.R. and C.V.M. designed and executed the experimental validations and contributed to sections on the manuscript. A.F., R.O. and C.M.L. managed the project with the IBM World Community Grid (WGC) and edited the final version.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

10822_2016_9921_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1113 kb)


  1. 1.
    Desjeux P (2004) Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis 27:305–318. doi: 10.1016/j.cimid.2004.03.004 CrossRefGoogle Scholar
  2. 2.
    Herwaldt BL (1999) Leishmaniasis. Lancet 354:1191–1199. doi: 10.1016/S0140-6736(98)10178-2 CrossRefGoogle Scholar
  3. 3.
    World Health Organization (2012) Leishmaniasis: worldwide epidemiological and drug access updateGoogle Scholar
  4. 4.
    Sundar S, Olliaro PL (2007) Miltefosine in the treatment of leishmaniasis: clinical evidence for informed clinical risk management. Ther Clin Risk Manag 3:733–740Google Scholar
  5. 5.
    Chappuis F, Sundar S, Hailu A et al (2007) Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nat Rev Microbiol 5:873–882. doi: 10.1038/nrmicro1748 CrossRefGoogle Scholar
  6. 6.
    Croft SL, Seifert K, Yardley V (2006) Current scenario of drug development for leishmaniasis. Indian J Med Res 123:399–410Google Scholar
  7. 7.
    Goyeneche-Patino D, Valderrama L, Walker J, Saravia N (2008) Antimony resistance and trypanothione in experimentally selected and clinical strains of Leishmania panamensis. Antimicrob Agents Chemother 52:4503–4506. doi: 10.1128/AAC.01075-08 CrossRefGoogle Scholar
  8. 8.
    Maltezou HC (2010) Drug resistance in visceral leishmaniasis. J Biomed Biotechnol 2010:617521. doi: 10.1155/2010/617521 CrossRefGoogle Scholar
  9. 9.
    Scheltema RA, Decuypere S, T’kindt R et al (2010) The potential of metabolomics for Leishmania research in the post-genomics era. Parasitology 137:1291–1302. doi: 10.1017/S0031182009992022 CrossRefGoogle Scholar
  10. 10.
    Paape D, Aebischer T (2011) Contribution of proteomics of Leishmania spp. to the understanding of differentiation, drug resistance mechanisms, vaccine and drug development. J Proteom 74:1614–1624. doi: 10.1016/j.jprot.2011.05.005 CrossRefGoogle Scholar
  11. 11.
    Chawla B, Madhubala R (2010) Drug targets in Leishmania. J Parasit Dis 34:1–13. doi: 10.1007/s12639-010-0006-3 CrossRefGoogle Scholar
  12. 12.
    Peacock CS, Seeger K, Harris D et al (2008) Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet 39:839–847. doi: 10.1038/ng2053.Comparative CrossRefGoogle Scholar
  13. 13.
    de Toledo J, Vasconcelos E (2010) Using genomic information to understand Leishmania biology. Open Parasitol 4:156–166CrossRefGoogle Scholar
  14. 14.
    Law V, Knox C, Djoumbou Y et al (2014) DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res 42:D1091–D1097. doi: 10.1093/nar/gkt1068 CrossRefGoogle Scholar
  15. 15.
    Koutsoukas A, Simms B, Kirchmair J et al (2011) From in silico target prediction to multi-target drug design: current databases, methods and applications. J Proteom 74:2554–2574. doi: 10.1016/j.jprot.2011.05.011 CrossRefGoogle Scholar
  16. 16.
    Liu Z, Fang H, Reagan K et al (2012) In silico drug repositioning—what we need to know. Drug Discov Today 18:110–115. doi: 10.1016/j.drudis.2012.08.005 CrossRefGoogle Scholar
  17. 17.
    Cavasotto CN, Orry AJW (2007) Ligand docking and structure-based virtual screening in drug discovery. Curr Top Med Chem 7:1006–1014CrossRefGoogle Scholar
  18. 18.
    Baber JC, Shirley WA, Gao Y, Feher M (2006) The use of consensus scoring in ligand-based virtual screening. J Chem Inf Model 46:277–288. doi: 10.1021/ci050296y CrossRefGoogle Scholar
  19. 19.
    Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28:235–242CrossRefGoogle Scholar
  20. 20.
    Grover A, Katiyar SP, Singh SK et al (2012) A leishmaniasis study: structure-based screening and molecular dynamics mechanistic analysis for discovering potent inhibitors of spermidine synthase. Biochim Biophys Acta 1824:1476–1483. doi: 10.1016/j.bbapap.2012.05.016 CrossRefGoogle Scholar
  21. 21.
    Gupta CL, Khan MKA, Khan MF, Tiwari AK (2013) Homology modeling of LmxMPK4 of Leishmania mexicana and virtual screening of potent inhibitors against it. Interdiscip Sci 5:136–144. doi: 10.1007/s12539-013-0164-y CrossRefGoogle Scholar
  22. 22.
    Totrov M, Abagyan R (2008) Flexible ligand docking to multiple receptor conformations: a practical alternative. Curr Opin Struct Biol 18:178–184. doi: 10.1016/ CrossRefGoogle Scholar
  23. 23.
    Smith GR, Fitzjohn PW, Page CS, Bates PA (2005) Incorporation of flexibility into rigid-body docking: applications in rounds 3–5 of CAPRI. Proteins Struct Funct Genet 60:263–268. doi: 10.1002/prot.20568 CrossRefGoogle Scholar
  24. 24.
    Król M, Chaleil RAG, Tournier AL, Bates PA (2007) Implicit flexibility in protein docking: cross-docking and local refinement. Proteins Struct Funct Bioinform 69:750–757. doi: 10.1002/prot.21698 CrossRefGoogle Scholar
  25. 25.
    Amaro RE, Baron R, McCammon JA (2008) An improved relaxed complex scheme for receptor flexibility in computer-aided drug design. J Comput Aided Mol Des 22:693–705. doi: 10.1007/s10822-007-9159-2 CrossRefGoogle Scholar
  26. 26.
    Patel JS, Berteotti A, Ronsisvalle S et al (2014) Steered molecular dynamics simulations for studying protein-ligand interaction in cyclin-dependent kinase 5. J Chem Inf Model 54:470–480. doi: 10.1021/ci4003574 CrossRefGoogle Scholar
  27. 27.
    Calimet N, Schaefer M, Simonson T (2001) Protein molecular dynamics with the generalized Born/ACE solvent model. Proteins Struct Funct Genet 45:144–158. doi: 10.1002/prot.1134 CrossRefGoogle Scholar
  28. 28.
    Cheng X, Wang H, Grant B et al (2006) Targeted molecular dynamics study of C-loop closure and channel gating in nicotinic receptors. PLoS Comput Biol 2:1173–1184. doi: 10.1371/journal.pcbi.0020134 CrossRefGoogle Scholar
  29. 29.
    O’Donoghue P, Luthey-Schulten Z (2005) Evolutionary profiles derived from the QR factorization of multiple structural alignments gives an economy of information. J Mol Biol 346:875–894. doi: 10.1016/j.jmb.2004.11.053 CrossRefGoogle Scholar
  30. 30.
    Lin J, Perryman AL, Schames JR, Mccammon JA (2002) Computational drug design accommodating receptor flexibility the relaxed complex scheme. J Am Chem Soc 124(20):5632–5633. doi: 10.1021/ja0260162 CrossRefGoogle Scholar
  31. 31.
    Schames JR, Henchman RH, Siegel JS et al (2004) Discovery of a novel binding trench in HIV integrase. J Med Chem 47:1879–1881. doi: 10.1021/jm0341913 CrossRefGoogle Scholar
  32. 32.
    Ivetac A, McCammon JA (2011) Molecular recognition in the case of flexible targets. Curr Pharm Des 17:1663–1671. doi: 10.2174/138161211796355056 CrossRefGoogle Scholar
  33. 33.
    Ylilauri M, Pentikäinen OT (2013) MMGBSA as a tool to understand the binding affinities of filamin-peptide interactions. J Chem Inf Model 53:2626–2633. doi: 10.1021/ci4002475 CrossRefGoogle Scholar
  34. 34.
    Berstis V, Bolze R, Desprez F, Reed K (2009) From dedicated grid to volunteer grid: large scale execution of a bioinformatics application. J Grid Comput 7:463–478. doi: 10.1007/s10723-009-9130-7 CrossRefGoogle Scholar
  35. 35.
    Vanommeslaeghe K, Hatcher E, Acharya C et al (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31:671–690. doi: 10.1002/jcc.21367 Google Scholar
  36. 36.
    Lzaguirre JA, Catarello DP, Wozniak JM, Skeel RD (2001) Langevin stabilization of molecular dynamics. J Chem Phys 114:2090–2098. doi: 10.1063/1.1332996 CrossRefGoogle Scholar
  37. 37.
    Toukmaji A, Sagui C, Board J, Darden T (2000) Efficient particle-mesh Ewald based approach to fixed and induced dipolar interactions. J Chem Phys 113:10913–10927. doi: 10.1063/1.1324708 CrossRefGoogle Scholar
  38. 38.
    Phillips JC, Braun R, Wang W et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802. doi: 10.1002/jcc.20289 CrossRefGoogle Scholar
  39. 39.
    Harris R, Olson AJ, Goodsell DS (2008) Automated prediction of ligand-binding sites in proteins. Proteins 70:1506–1517. doi: 10.1002/prot.21645 CrossRefGoogle Scholar
  40. 40.
    Laurie ATR, Jackson RM (2005) Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics 21:1908–1916. doi: 10.1093/bioinformatics/bti315 CrossRefGoogle Scholar
  41. 41.
    Morris GM, Huey R, Lindstrom W et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. doi: 10.1002/jcc.21256 CrossRefGoogle Scholar
  42. 42.
    Cross JB, Thompson DC, Rai BK et al (2009) Comparison of several molecular docking programs: pose prediction and virtual screening accuracy. J Chem Inf Model 49:1455–1474. doi: 10.1021/ci900056c CrossRefGoogle Scholar
  43. 43.
    Irwin JJ, Sterling T, Mysinger MM et al (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52:1757–1768. doi: 10.1021/ci3001277 CrossRefGoogle Scholar
  44. 44.
    Lipinski CA (2000) Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 44:235–249. doi: 10.1016/S1056-8719(00)00107-6 CrossRefGoogle Scholar
  45. 45.
    Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. doi: 10.1002/jcc.21334.AutoDock Google Scholar
  46. 46.
    Cao Y, Jiang T, Girke T (2008) A maximum common substructure-based algorithm for searching and predicting drug-like compounds. Bioinformatics 24:366–374. doi: 10.1093/bioinformatics/btn186 CrossRefGoogle Scholar
  47. 47.
    Landrum G (2015) RDKit: open-source cheminformaticsGoogle Scholar
  48. 48.
    Ochoa R, Davies M, Papadatos G et al (2014) myChEMBL: a virtual machine implementation of open data and cheminformatics tools. Bioinformatics 30:298–300. doi: 10.1093/bioinformatics/btt666 CrossRefGoogle Scholar
  49. 49.
    Insuasty B, Ramírez J, Becerra D et al (2015) An efficient synthesis of new caffeine-based chalcones, pyrazolines and pyrazolo[3,4-b][1, 4]diazepines as potential antimalarial, antitrypanosomal and antileishmanial agents. Eur J Med Chem 93:401–413. doi: 10.1016/j.ejmech.2015.02.040 CrossRefGoogle Scholar
  50. 50.
    Finney DJ (1944) The application of the probit method to toxicity test data adjusted for mortality in the controls. Ann Appl Biol 31:68–74. doi: 10.1111/j.1744-7348.1944.tb06210.x CrossRefGoogle Scholar
  51. 51.
    Pulido SA, Muñoz DL, Restrepo AM et al (2012) Improvement of the green fluorescent protein reporter system in Leishmania spp. for the in vitro and in vivo screening of antileishmanial drugs. Acta Trop 122:36–45. doi: 10.1016/j.actatropica.2011.11.015 CrossRefGoogle Scholar
  52. 52.
    Österberg F, Morris GM, Sanner MF et al (2002) Automated docking to multiple target structures: incorporation of protein mobility and structural water heterogeneity in autodock. Proteins Struct Funct Genet 46:34–40. doi: 10.1002/prot.10028 CrossRefGoogle Scholar
  53. 53.
    Babaoglu K, Simconov A, Irwin JJ et al (2008) Comprehensive mechanistic analysis of hits from high-throughput and docking screens against β-lactamase. J Med Chem 51:2502–2511. doi: 10.1021/jm701500e CrossRefGoogle Scholar
  54. 54.
    Annoura T, Nara T, Makiuchi T et al (2005) The origin of dihydroorotate dehydrogenase genes of kinetoplastids, with special reference to their biological significance and adaptation to anaerobic, parasitic conditions. J Mol Evol 60:113–127. doi: 10.1007/s00239-004-0078-8 CrossRefGoogle Scholar
  55. 55.
    Huang CC, Meng EC, Morris JH et al (2014) Enhancing UCSF Chimera through web services. Nucleic Acids Res 42:1–7. doi: 10.1093/nar/gku377 CrossRefGoogle Scholar
  56. 56.
    Cheleski J, Rocha JR, Pinheiro MP et al (2010) Novel insights for dihydroorotate dehydrogenase class 1A inhibitors discovery. Eur J Med Chem 45:5899–5909. doi: 10.1016/j.ejmech.2010.09.055 CrossRefGoogle Scholar
  57. 57.
    Pitt WR, Parry DM, Perry BG, Groom CR (2009) Heteroaromatic rings of the future. J Med Chem 52:2952–2963. doi: 10.1021/jm801513z CrossRefGoogle Scholar
  58. 58.
    Erlanson DA, Braisted AC, Raphael DR et al (2000) Site-directed ligand discovery. Proc Natl Acad Sci USA 97:9367–9372CrossRefGoogle Scholar
  59. 59.
    Cordeiro AT, Feliciano PR, Pinheiro MP, Nonato MC (2012) Crystal structure of dihydroorotate dehydrogenase from Leishmania major. Biochimie 94:1739–1748. doi: 10.1016/j.biochi.2012.04.003 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Rodrigo Ochoa
    • 1
  • Stanley J. Watowich
    • 2
  • Andrés Flórez
    • 3
  • Carol V. Mesa
    • 1
  • Sara M. Robledo
    • 1
  • Carlos Muskus
    • 1
    Email author
  1. 1.Programa de Estudio y Control de Enfermedades Tropicales -PECETUniversidad de AntioquiaMedellínColombia
  2. 2.Department of Biochemistry and Molecular BiologyUniversity of Texas Medical BranchGalvestonUSA
  3. 3.Division Theoretical Systems BiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany

Personalised recommendations