Abstract
Drug–target interactions (DTIs) are central to current drug discovery processes and public health fields. Analyzing the DTI profiling of the drugs helps to infer drug indications, adverse drug reactions, drug–drug interactions, and drug mode of actions. Therefore, it is of high importance to reliably and fast predict DTI profiling of the drugs on a genome-scale level. Here, we develop the TargetNet server, which can make real-time DTI predictions based only on molecular structures, following the spirit of multi-target SAR methodology. Naïve Bayes models together with various molecular fingerprints were employed to construct prediction models. Ensemble learning from these fingerprints was also provided to improve the prediction ability. When the user submits a molecule, the server will predict the activity of the user’s molecule across 623 human proteins by the established high quality SAR model, thus generating a DTI profiling that can be used as a feature vector of chemicals for wide applications. The 623 SAR models related to 623 human proteins were strictly evaluated and validated by several model validation strategies, resulting in the AUC scores of 75–100 %. We applied the generated DTI profiling to successfully predict potential targets, toxicity classification, drug–drug interactions, and drug mode of action, which sufficiently demonstrated the wide application value of the potential DTI profiling. The TargetNet webserver is designed based on the Django framework in Python, and is freely accessible at http://targetnet.scbdd.com.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Yıldırım MA, Goh K-I, Cusick ME, Barabási A-L, Vidal M (2007) Nat Biotechnol 25(10):1119
Nunez S, Venhorst J, Kruse CG (2011) Drug Discov Today 17(1):10
Gottlieb A, Stein GY, Ruppin E, Sharan R (2011) Mol Syst Biol 7(1):496
Luo H, Chen J, Shi L, Mikailov M, Zhu H, Wang K, He L, Yang L (2011) Nucleic Acids Res 39(Suppl 2):W492
Cao DS, Xiao N, Li YJ, Zeng WB, Liang YZ, Lu AP, Xu QS, Chen A (2015) CPT: pharmacometrics & systems. Pharmacology 4(9):498
Wienkers LC, Heath TG (2005) Nat Rev Drug Discov 4(10):825
Luo H, Zhang P, Huang H, Huang J, Kao E, Shi L, He L, Yang L (2014) Nucleic Acids Res 42(W1):W46
Tatonetti NP, Ye PP, Daneshjou R, Altman RB (2012) Sci Transl Med 4(125):125ra31
Iorio F, Bosotti R, Scacheri E, Belcastro V, Mithbaokar P, Ferriero R, Murino L, Tagliaferri R, Brunetti-Pierri N, Isacchi A (2010) Proc Natl Acad Sci 107(33):14621
Iorio F, Tagliaferri R, Bernardo Dd (2009) J Comput Biol 16(2):241
Li H, Gao Z, Kang L, Zhang H, Yang K, Yu K, Luo X, Zhu W, Chen K, Shen J (2006) Nucleic Acids Res 34(suppl 2):W219
Kharkar PS, Warrier S, Gaud RS (2014) Fut Med Chem 6(3):333
Lee M, Kim D (2012) BMC Bioinformatics 13(Suppl 17):S6
Cao D-S, Liang Y-Z, Deng Z, Hu Q-N, He M, Xu Q-S, Zhou G-H, Zhang L-X, Deng Z, Liu S (2013) PLoS One 8(4):e57680
Cao D-S, Liu S, Xu Q-S, Lu H-M, Huang J-H, Hu Q-N, Liang Y-Z (2012) Anal Chim Acta 752:1
Bredel M, Jacoby E (2004) Nat Rev Genet 5(4):262
Klabunde T (2007) Br J Pharmacol 152(1):5
Nagamine N, Sakakibara Y (2007) Bioinformatics 23(15):2004
He Z, Zhang J, Shi X-H, Hu L-L, Kong X, Cai Y-D, Chou K-C (2010) PLoS One 5(3):e9603
Yu H, Chen J, Xu X, Li Y, Zhao H, Fang Y, Li X, Zhou W, Wang W, Wang Y (2012) PLoS One 7(5):e37608
Xiao X, Min J-L, Wang P, Chou K-C (2013) PLoS One 8(8):e72234
Cheng F, Zhou Y, Li J, Li W, Liu G, Tang Y (2012) Mol BioSyst 8(9):2373
Cheng F, Zhou Y, Li W, Liu G, Tang Y (2012) PLoS One 7(7):e41064
Cheng F, Liu C, Jiang J, Lu W, Li W, Liu G, Zhou W, Huang J, Tang Y (2012) PLoS Comput Biol 8(5):e1002503
Yamanishi Y, Araki M, Gutteridge A, Honda W, Kanehisa M (2008) Bioinformatics 24(13):i232
Campillos M, Kuhn M, Gavin AC, Jensen LJ, Bork P (2008) Science 321(5886):263
Bleakley K, Yamanishi Y (2009) Bioinformatics 25(18):2397
Keiser MJ, Setola V, Irwin JJ, Laggner C, Abbas AI, Hufeisen SJ, Jensen NH, Kuijer MB, Matos RC, Tran TB, Whaley R, Glennon RA, Hert J, Thomas KLH, Edwards DD, Shoichet BK, Roth BL (2009) Nature 462(7270):175
Xia Z, Wu L-Y, Zhou X, Wong S (2010) BMC Syst Biol 4(Suppl 2):S6
Jacob L, Vert J-P (2008) Bioinformatics 24(19):2149
van Laarhoven T, Nabuurs SB, Marchiori E (2011) Bioinformatics 27(21):3036
Chen X, Liu M-X, Yan G-Y (2012) Mol BioSyst 8(7):1970
Mei J-P, Kwoh C-K, Yang P, Li X-L, Zheng J (2013) Bioinformatics 29(2):238
Mizutani S, Pauwels E, Stoven V, Goto S, Yamanishi Y (2012) Bioinformatics 28(18):i522
Csermely P, Agoston V, Pongor S (2005) Trends Pharmacol Sci 26(4):178
Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK (2007) Nucleic Acids Res 35(suppl 1):D198
Scott DE, Coyne AG, Hudson SA, Abell C (2012) Biochemistry 51(25):4990
Cao DS, Yang YN, Zhao JC, Yan J, Liu S, Hu QN, Xu QS, Liang YZ (2012) J Chemom 26(1–2):7
Cao D-S, Xu Q-S, Hu Q-N, Liang Y-Z (2013) Bioinformatics 29(8):1092
Cao D-S, Liang Y-Z, Yan J, Tan G-S, Xu Q-S, Liu S (2013) J Chem Inf Model 53(11):3086
Bender A, Mussa HY, Glen RC, Reiling S (2004) J Chem Inf Comput Sci 44(1):170
Wang S, Li Y, Wang J, Chen L, Zhang L, Yu H, Hou T (2012) Mol Pharm 9(4):996
Watson P (2008) J Chem Inf Model 48(1):166
Zhang L, Zhang Y, Zhao P, Huang S-M (2009) AAPS J 11(2):300
Liu M, Wu Y, Chen Y, Sun J, Zhao Z, Chen X-w, Matheny ME, Xu H (2012) J Am Med Inf Assoc 19(E1):E28
Park Y, Marcotte EM (2012) Nat Methods 9(12):1134
Pahikkala T, Airola A, Pietilä S, Shakyawar S, Szwajda A, Tang J, Aittokallio T (2015) Brief Bioinform 16(2):325
Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet J-P, Subramanian A, Ross KN (2006) Science 313(5795):1929
Yamanishi Y, Kotera M, Moriya Y, Sawada R, Kanehisa M, Goto S (2014) Nucleic Acids Res 42(W1):W39
Li G-H, Huang J-F (2012) Bioinformatics 28(24):3334
Acknowledgments
We would like to thank the Django group for their great Django server. We would also like to thank Dr. Peter Ertl for his JME molecular editor, and we thank the developers of D3.js. We would also like to thank three anonymous referees and the editor for their constructive comments, which greatly helped improve upon the original version of the manuscript.
Funding
This work has been financially supported by grants from the Project of Innovation-driven Plan in Central South University, the National Natural Science Foundation of China (Grants No. 81402853), the National key basic research program (Grants No. 2015CB910700), and the Postdoctoral Science Foundation of Central South University, the Chinese Postdoctoral Science Foundation (2014T70794, 2014M562142). The studies meet with the approval of the university’s review board.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
None.
Additional information
Zhi-Jiang Yao, Jie Dong and Yu-Jing Che have contributed equally to this work.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Yao, ZJ., Dong, J., Che, YJ. et al. TargetNet: a web service for predicting potential drug–target interaction profiling via multi-target SAR models. J Comput Aided Mol Des 30, 413–424 (2016). https://doi.org/10.1007/s10822-016-9915-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10822-016-9915-2