TargetNet: a web service for predicting potential drug–target interaction profiling via multi-target SAR models

Abstract

Drug–target interactions (DTIs) are central to current drug discovery processes and public health fields. Analyzing the DTI profiling of the drugs helps to infer drug indications, adverse drug reactions, drug–drug interactions, and drug mode of actions. Therefore, it is of high importance to reliably and fast predict DTI profiling of the drugs on a genome-scale level. Here, we develop the TargetNet server, which can make real-time DTI predictions based only on molecular structures, following the spirit of multi-target SAR methodology. Naïve Bayes models together with various molecular fingerprints were employed to construct prediction models. Ensemble learning from these fingerprints was also provided to improve the prediction ability. When the user submits a molecule, the server will predict the activity of the user’s molecule across 623 human proteins by the established high quality SAR model, thus generating a DTI profiling that can be used as a feature vector of chemicals for wide applications. The 623 SAR models related to 623 human proteins were strictly evaluated and validated by several model validation strategies, resulting in the AUC scores of 75–100 %. We applied the generated DTI profiling to successfully predict potential targets, toxicity classification, drug–drug interactions, and drug mode of action, which sufficiently demonstrated the wide application value of the potential DTI profiling. The TargetNet webserver is designed based on the Django framework in Python, and is freely accessible at http://targetnet.scbdd.com.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Yıldırım MA, Goh K-I, Cusick ME, Barabási A-L, Vidal M (2007) Nat Biotechnol 25(10):1119

    Article  Google Scholar 

  2. 2.

    Nunez S, Venhorst J, Kruse CG (2011) Drug Discov Today 17(1):10

    Google Scholar 

  3. 3.

    Gottlieb A, Stein GY, Ruppin E, Sharan R (2011) Mol Syst Biol 7(1):496

    Article  Google Scholar 

  4. 4.

    Luo H, Chen J, Shi L, Mikailov M, Zhu H, Wang K, He L, Yang L (2011) Nucleic Acids Res 39(Suppl 2):W492

  5. 5.

    Cao DS, Xiao N, Li YJ, Zeng WB, Liang YZ, Lu AP, Xu QS, Chen A (2015) CPT: pharmacometrics & systems. Pharmacology 4(9):498

    CAS  Google Scholar 

  6. 6.

    Wienkers LC, Heath TG (2005) Nat Rev Drug Discov 4(10):825

    CAS  Article  Google Scholar 

  7. 7.

    Luo H, Zhang P, Huang H, Huang J, Kao E, Shi L, He L, Yang L (2014) Nucleic Acids Res 42(W1):W46

  8. 8.

    Tatonetti NP, Ye PP, Daneshjou R, Altman RB (2012) Sci Transl Med 4(125):125ra31

    Article  Google Scholar 

  9. 9.

    Iorio F, Bosotti R, Scacheri E, Belcastro V, Mithbaokar P, Ferriero R, Murino L, Tagliaferri R, Brunetti-Pierri N, Isacchi A (2010) Proc Natl Acad Sci 107(33):14621

    CAS  Article  Google Scholar 

  10. 10.

    Iorio F, Tagliaferri R, Bernardo Dd (2009) J Comput Biol 16(2):241

    CAS  Article  Google Scholar 

  11. 11.

    Li H, Gao Z, Kang L, Zhang H, Yang K, Yu K, Luo X, Zhu W, Chen K, Shen J (2006) Nucleic Acids Res 34(suppl 2):W219

    CAS  Article  Google Scholar 

  12. 12.

    Kharkar PS, Warrier S, Gaud RS (2014) Fut Med Chem 6(3):333

    CAS  Article  Google Scholar 

  13. 13.

    Lee M, Kim D (2012) BMC Bioinformatics 13(Suppl 17):S6

    CAS  Google Scholar 

  14. 14.

    Cao D-S, Liang Y-Z, Deng Z, Hu Q-N, He M, Xu Q-S, Zhou G-H, Zhang L-X, Deng Z, Liu S (2013) PLoS One 8(4):e57680

    CAS  Article  Google Scholar 

  15. 15.

    Cao D-S, Liu S, Xu Q-S, Lu H-M, Huang J-H, Hu Q-N, Liang Y-Z (2012) Anal Chim Acta 752:1

    CAS  Article  Google Scholar 

  16. 16.

    Bredel M, Jacoby E (2004) Nat Rev Genet 5(4):262

    CAS  Article  Google Scholar 

  17. 17.

    Klabunde T (2007) Br J Pharmacol 152(1):5

    CAS  Article  Google Scholar 

  18. 18.

    Nagamine N, Sakakibara Y (2007) Bioinformatics 23(15):2004

    CAS  Article  Google Scholar 

  19. 19.

    He Z, Zhang J, Shi X-H, Hu L-L, Kong X, Cai Y-D, Chou K-C (2010) PLoS One 5(3):e9603

    Article  Google Scholar 

  20. 20.

    Yu H, Chen J, Xu X, Li Y, Zhao H, Fang Y, Li X, Zhou W, Wang W, Wang Y (2012) PLoS One 7(5):e37608

    CAS  Article  Google Scholar 

  21. 21.

    Xiao X, Min J-L, Wang P, Chou K-C (2013) PLoS One 8(8):e72234

    CAS  Article  Google Scholar 

  22. 22.

    Cheng F, Zhou Y, Li J, Li W, Liu G, Tang Y (2012) Mol BioSyst 8(9):2373

    CAS  Article  Google Scholar 

  23. 23.

    Cheng F, Zhou Y, Li W, Liu G, Tang Y (2012) PLoS One 7(7):e41064

    CAS  Article  Google Scholar 

  24. 24.

    Cheng F, Liu C, Jiang J, Lu W, Li W, Liu G, Zhou W, Huang J, Tang Y (2012) PLoS Comput Biol 8(5):e1002503

    CAS  Article  Google Scholar 

  25. 25.

    Yamanishi Y, Araki M, Gutteridge A, Honda W, Kanehisa M (2008) Bioinformatics 24(13):i232

    CAS  Article  Google Scholar 

  26. 26.

    Campillos M, Kuhn M, Gavin AC, Jensen LJ, Bork P (2008) Science 321(5886):263

    CAS  Article  Google Scholar 

  27. 27.

    Bleakley K, Yamanishi Y (2009) Bioinformatics 25(18):2397

    CAS  Article  Google Scholar 

  28. 28.

    Keiser MJ, Setola V, Irwin JJ, Laggner C, Abbas AI, Hufeisen SJ, Jensen NH, Kuijer MB, Matos RC, Tran TB, Whaley R, Glennon RA, Hert J, Thomas KLH, Edwards DD, Shoichet BK, Roth BL (2009) Nature 462(7270):175

    CAS  Article  Google Scholar 

  29. 29.

    Xia Z, Wu L-Y, Zhou X, Wong S (2010) BMC Syst Biol 4(Suppl 2):S6

    Article  Google Scholar 

  30. 30.

    Jacob L, Vert J-P (2008) Bioinformatics 24(19):2149

    CAS  Article  Google Scholar 

  31. 31.

    van Laarhoven T, Nabuurs SB, Marchiori E (2011) Bioinformatics 27(21):3036

    Article  Google Scholar 

  32. 32.

    Chen X, Liu M-X, Yan G-Y (2012) Mol BioSyst 8(7):1970

    CAS  Article  Google Scholar 

  33. 33.

    Mei J-P, Kwoh C-K, Yang P, Li X-L, Zheng J (2013) Bioinformatics 29(2):238

    CAS  Article  Google Scholar 

  34. 34.

    Mizutani S, Pauwels E, Stoven V, Goto S, Yamanishi Y (2012) Bioinformatics 28(18):i522

    CAS  Article  Google Scholar 

  35. 35.

    Csermely P, Agoston V, Pongor S (2005) Trends Pharmacol Sci 26(4):178

    CAS  Article  Google Scholar 

  36. 36.

    Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK (2007) Nucleic Acids Res 35(suppl 1):D198

    CAS  Article  Google Scholar 

  37. 37.

    Scott DE, Coyne AG, Hudson SA, Abell C (2012) Biochemistry 51(25):4990

    CAS  Article  Google Scholar 

  38. 38.

    Cao DS, Yang YN, Zhao JC, Yan J, Liu S, Hu QN, Xu QS, Liang YZ (2012) J Chemom 26(1–2):7

    CAS  Article  Google Scholar 

  39. 39.

    Cao D-S, Xu Q-S, Hu Q-N, Liang Y-Z (2013) Bioinformatics 29(8):1092

    CAS  Article  Google Scholar 

  40. 40.

    Cao D-S, Liang Y-Z, Yan J, Tan G-S, Xu Q-S, Liu S (2013) J Chem Inf Model 53(11):3086

    CAS  Article  Google Scholar 

  41. 41.

    Bender A, Mussa HY, Glen RC, Reiling S (2004) J Chem Inf Comput Sci 44(1):170

    CAS  Article  Google Scholar 

  42. 42.

    Wang S, Li Y, Wang J, Chen L, Zhang L, Yu H, Hou T (2012) Mol Pharm 9(4):996

    CAS  Article  Google Scholar 

  43. 43.

    Watson P (2008) J Chem Inf Model 48(1):166

    CAS  Article  Google Scholar 

  44. 44.

    Zhang L, Zhang Y, Zhao P, Huang S-M (2009) AAPS J 11(2):300

    CAS  Article  Google Scholar 

  45. 45.

    Liu M, Wu Y, Chen Y, Sun J, Zhao Z, Chen X-w, Matheny ME, Xu H (2012) J Am Med Inf Assoc 19(E1):E28

    Article  Google Scholar 

  46. 46.

    Park Y, Marcotte EM (2012) Nat Methods 9(12):1134

    CAS  Article  Google Scholar 

  47. 47.

    Pahikkala T, Airola A, Pietilä S, Shakyawar S, Szwajda A, Tang J, Aittokallio T (2015) Brief Bioinform 16(2):325

  48. 48.

    Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet J-P, Subramanian A, Ross KN (2006) Science 313(5795):1929

    CAS  Article  Google Scholar 

  49. 49.

    Yamanishi Y, Kotera M, Moriya Y, Sawada R, Kanehisa M, Goto S (2014) Nucleic Acids Res 42(W1):W39

    CAS  Article  Google Scholar 

  50. 50.

    Li G-H, Huang J-F (2012) Bioinformatics 28(24):3334

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the Django group for their great Django server. We would also like to thank Dr. Peter Ertl for his JME molecular editor, and we thank the developers of D3.js. We would also like to thank three anonymous referees and the editor for their constructive comments, which greatly helped improve upon the original version of the manuscript.

Funding

This work has been financially supported by grants from the Project of Innovation-driven Plan in Central South University, the National Natural Science Foundation of China (Grants No. 81402853), the National key basic research program (Grants No. 2015CB910700), and the Postdoctoral Science Foundation of Central South University, the Chinese Postdoctoral Science Foundation (2014T70794, 2014M562142). The studies meet with the approval of the university’s review board.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dong-Sheng Cao.

Ethics declarations

Conflict of interest

None.

Additional information

Zhi-Jiang Yao, Jie Dong and Yu-Jing Che have contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yao, ZJ., Dong, J., Che, YJ. et al. TargetNet: a web service for predicting potential drug–target interaction profiling via multi-target SAR models. J Comput Aided Mol Des 30, 413–424 (2016). https://doi.org/10.1007/s10822-016-9915-2

Download citation

Keywords

  • Web server
  • SAR models
  • Drug–target interaction
  • Multi-target SAR
  • Naïve Bayes