Extracting ligands from receptors by reversed targeted molecular dynamics
Abstract
Short targeted MD trajectories are used to expel ligands from binding sites. The expulsion is governed by a linear increase of the target RMSD value, growing from zero to an arbitrary chosen final RMSD that forces the ligand to a selected distance outside of the receptor. The RMSD lag (i.e., the difference between the imposed and the actual RMSD) can be used to follow barriers encountered by the ligand during its way out of the receptor. The force constant used for the targeted MD can transform the RMSD lag into a strain energy. Integration of the (time-dependent) strain energy over time yields a value with the dimensions of “action” (i.e, energy multiplied by time) and can serve as a measure for the overall effort required to extract the ligand from its binding site. Possibilities to compare (numerically and graphically) the randomly detected exit pathways are discussed. As an example, the method is tested on the exit of bisphenol A from the human estrogen-related receptor \(\gamma\) and of GW0072 from the peroxysome proliferator activated receptor.
Keywords
Reversed targeted MD Nuclear receptors Ligand exit pathwaysNotes
Acknowledgments
The author thanks Anna Vulpetti and Rainer Wilcken for useful suggestions and for successfully testing the simulation protocols described here on various projects, and Richard Lewis for support and constructive comments.
Supplementary material
References
- 1.Colizzi F, Perozzo R, Scapozza L, Recanatini M, Cavalli A (2010) J Am Chem Soc 132(21):7361CrossRefGoogle Scholar
- 2.Patel JS, Branduardi D, Masetti M, Rocchia W, Cavalli A (2011) J Chem Theory Comput 7(10):3368CrossRefGoogle Scholar
- 3.Gräter F, De Groot BL, Jiang H, Grubmüller H (2006) Structure 14(10):1567CrossRefGoogle Scholar
- 4.Lüdemann SK, Lounnas V, Wade RC (2000) J Mol Biol 303(5):797CrossRefGoogle Scholar
- 5.Lüdemann SK, Lounnas V, Wade RC (2000) J Mol Biol 303(5):813CrossRefGoogle Scholar
- 6.Winn PJ, Lüdemann SK, Gauges R, Lounnas V, Wade RC (2002) Proc Natl Acad Sci USA 99(8):5361CrossRefGoogle Scholar
- 7.Carlsson P, Burendahl S, Nilsson L (2006) Biophys J 91(9):3151CrossRefGoogle Scholar
- 8.Martínez L, Webb P, Polikarpov I, Skaf MS (2006) J Med Chem 49(1):23CrossRefGoogle Scholar
- 9.Vashisth H, Abrams CF (2008) Biophys J 95(9):4193CrossRefGoogle Scholar
- 10.Kingsley LJ, Lill MA (2014) J Comput Chem 35(24):1748CrossRefGoogle Scholar
- 11.Capelli AM, Costantino G (2014) J Chem Inf Model 54(11):3124CrossRefGoogle Scholar
- 12.Genest D, Garnier N, Arrault A, Marot C, Morin-Allory L, Genest M (2008) Eur Biophys J 37(4):369CrossRefGoogle Scholar
- 13.Peräkylä M (2009) Eur Biophys J 38(2):185CrossRefGoogle Scholar
- 14.Copeland RA, Pompliano DL, Meek TD (2006) Nat Rev Drug Discov 5(9):730CrossRefGoogle Scholar
- 15.Matsushima A, Kakuta Y, Teramoto T, Koshiba T, Liu X, Okada H, Tokunaga T, Kawabata Si, Kimura M, Shimohigashi Y (2007) J Biochem 142(4):517CrossRefGoogle Scholar
- 16.Oberfield JL, Collins JL, Holmes CP, Goreham DM, Cooper JP, Cobb JE, Lenhard JM, Hull-Ryde EA, Mohr CP, Blanchard SG, Parks DJ, Moore LB, Lehmann JM, Plunket K, Miller AB, Milburn MV, Kliewer SA, Willson TM (1999) Proc Natl Acad Sci USA 96(11):6102CrossRefGoogle Scholar
- 17.Case DA, Babin V, Berryman JT, Betz RM, Cai Q, Cerutti DS, Cheatham TE III, Darden TA, Duke RE, Gohlke H, Goetz AW, Gusarov S, Homeyer N, Janowski P, Kaus J, Kolossváry I, Kovalenko A, Lee TS, LeGrand S, Luchko T, Luo R, Madej B, Merz KM, Paesani F, Roe DR, Roitberg A, Sagui C, Salomon-Ferrer R, Seabra G, Simmerling CL, Smith W, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Kollman P (2014) Amber 14. University of California, San FranciscoGoogle Scholar
- 18.Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Proteins Struct Funct Bioinfm 65(3):712CrossRefGoogle Scholar
- 19.Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25(9):1157CrossRefGoogle Scholar
- 20.Wang J, Wang W, Kollman PA, Case DA (2006) J Mol Graph Model 25(2):247CrossRefGoogle Scholar
- 21.Jakalian A, Bush BL, Jack DB, Bayly CI (2000) J Comput Chem 21(2):132CrossRefGoogle Scholar
- 22.Jakalian A, Jack DB, Bayly CI (2002) J Comput Chem 23(16):1623CrossRefGoogle Scholar
- 23.Onufriev A, Bashford D, Case DA (2004) Proteins Struct Funct Bioinfm 55(2):383CrossRefGoogle Scholar
- 24.Roe DR, Cheatham TE III (2013) J Chem Theory Comput 9(7):3084CrossRefGoogle Scholar
- 25.Schrödinger LLC (2012) The PyMOL Molecular Graphics System, Version 1.5.0.5. Schrödinger, LLCGoogle Scholar
- 26.Chovancova E, Pavelka A, Benes P, Strnad O, Brezovsky J, Kozlikova B, Gora A, Sustr V, Klvana M, Medek P, Biermannova L, Sochor J, Damborský J (2012) PLoS Comput Biol 8(10):1Google Scholar
- 27.Pearlstein RA, Sherman W, Abel R (2013) Proteins Struct Funct Bioinfm 81(9):1509CrossRefGoogle Scholar